Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4555-4566.doi: 10.3864/j.issn.0578-1752.2019.24.010

• SOIL&FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY&ENVIRONMENT • Previous Articles     Next Articles

Technical Review of Fast Detection of Heavy Metals in Soil

XueFei MAO,JiXin LIU(),YongZhong QIAN()   

  1. Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences / Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2019-04-28 Accepted:2019-08-22 Online:2019-12-16 Published:2020-01-15
  • Contact: JiXin LIU,YongZhong QIAN E-mail:ljx2117@gmail.com;qyzcaas@163.com

Abstract:

Recently, with the high-speed development of industry and agriculture in China, the contamination of heavy metal has become a severe environmental problem caused by immoderate mining operation, "three wastes" emissions, vehicle exhaust, and misuse of agricultural chemical inputs. So, it is very important to monitor the contamination of heavy metals in soil. However, the national and industrial standards of detecting heavy metals in soil mainly focus on the traditional analytical approaches employed in laboratory at present. So, it is still difficult to achieve the on-site and fast detection of heavy metals in soil, which gives rise to such difficulty of monitoring and preventing the source contamination effectively and timely. In view of the matrix of soil sample, solid sampling analysis should be feasible to the fast detection of heavy metals, including electrothermal vaporization (ETV), X-ray fluorescence spectrometry (XRF), laser ablation (LA), laser induced breakthrough spectrometry (LIBS), X-ray photoelectron spectroscopy (XPS), and instrumental neutron activation analysis (INAA). The solid sampling techniques do not require digestion treatment and is thereby fast and efficient. However, among them, the detection limit and stability of XRF, LA, and LIBS cannot satisfy the all demands in standards of soil quality; on the other hand, it is too difficult to reach the miniaturization and on-site testing for LA, XAS, and INAA. By comparison, ETV is a kind of solid sampling tool with excellent advantages such as high analytical sensitivity, favorable stability, and being easy to be miniaturized, using electric heating to introduce analyses via aerosol from the sample into the atomizer or exciter for measurement. ETV is able to introduce heavy metals fast and efficiently, which is versatile to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), atomic emission spectrometry (AES), and induced coupled plasma mass spectrometry (ICP-MS). As usual, many materials such as carbon, metals, and quartz can be utilized for ETV, which are frequently processed into graphite furnace, porous carbon tube, tungsten coil, rhenium coil, quartz tube and so on. Among various ETV approaches, electromagnetic induction ETV is characterized with no cold zone, fast heating or cooling and miniaturization. Considering the complicated soil matrices, however, ETV has been always confronted with the bottleneck problem, namely matrix interference. Through integrating these advanced techniques including gas phase enrichment (GPE), dielectric barrier discharge, matrix modifier, background correction and so on, the matrix interference will be eliminated completely for the detection of heavy metals in soil when solid sampling by using ETV atomic spectrometers. Especially for GPE, it can realize both two aims at one time: eliminating matrix interference and improving analytical sensitivity. This review is about to bring some valuable suggestions for innovating the fast detection of heavy metals in soil, to play parts in the environmental monitoring and protection in the future.

Key words: soil, heavy metals, fast detection, electrothermal vaporization, solid sampling, matrix interference

[1] FRIMPONG S, KORANTENG S . Levels and human health risk assessment of heavy metals in surface soil of public parks in Southern Ghana. Environmental Monitoring and Assessment, 2019,191(9):588-602.
[2] GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A . Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS). Journal of Hazard Mater, 2008,154(1/3):325-330.
[3] TIGHE M, LOCKWOOD P, WILSON S, LISLE L . Comparison of digestion methods for ICP-OES analysis of a wide range of analytes in heavy metal contaminated soil samples with specific reference to arsenic and antimony. Communications in Soil Science and Plant Analysis, 2006,35(9/10):1369-1385.
[4] ODUKOYA A, OLOBANIYI S, OLUSEYI T . Assessment of Potentially Toxic Elements Pollution and Human Health Risk in Soil of Ilesha Gold Mining Site, Southwest Nigeria. Journal of the Geological Society of India, 2018,91(6):743-748.
[5] SHIBATA Y, SUYAMA J, KITANO M, NAKAMURA T . X-ray fluorescence analysis of Cr, As, Se, Cd, Hg, and Pb in soil using pressed powder pellet and loose powder methods. X-Ray Spectrometry, 2009,38(5):410-416.
[6] L’VOV B . Fifty Years of Atomic Absorption Spectrometry. Journal of Analytical Chemistry, 2005,60(4):382-392.
[7] FENG L, LIU J X, MAO X F, LU D, ZHU X F, QIAN Y Z . An integrated quartz tube atom trap coupled with solid sampling electrothermal vapourization and its application to detect trace lead in food samples by atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2016,31(11):2253-2260.
[8] ALMEIDA E, DURAN N M, GOMES M H F, SAVASSA S M, DA CRUZ T N M, MIGLIAVACCA R A, DE CARVALHO H W P . EDXRF for elemental determination of nanoarticle‐related agricultural samples. X-Ray Spectrometry, 2019,48(2):151-161.
[9] ABREGO Z, UNCETA N, SANCHEZ A, CABALLERO A G, OCHOA L M B, GOICOLEA M A, BARRIO R . Determination of mercury(ii) in water at sub-nanomolar levels by laser ablation-ICPMS analysis of screen printed electrodes used as a portable voltammetric preconcentration system. Analyst, 2017,142(7):1157-1164.
[10] LI J M, XU M L, MA Q X, ZHAO N, LI X Y, ZHANG Q M, GUO L, LU Y F . Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Talanta, 2019,194:697-702.
[11] KUBALA A, BANAŚ D, STABRAWA I, SZARY K, SOBOTA D, MAJEWSKA U, WUDARCZYK-MOCKO J, BRAZIEWICZ J, PAJEK M . Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,145:43-50.
[12] STELLATO F, CALANDRA M, D'ACAPITO F, DE SANTIS E, LA PENNA G, ROSSI G, MORANTE S . Multi-scale theoretical approach to X-ray absorption spectra in disordered systems: an application to the study of Zn(ii) in water. Physical Chemistry Chemical Physics, 2018,20(38):24775-24782.
[13] REZA P, ALIASGHAR F, ELHAM M . Determination of trace elements in the seeds of fruits using instrumental neutron activation analysis (INAA) in Arak, I.R. Iran. Journal of Radioanalytical and Nuclear Chemistry, 2017,315(1):89-93.
[14] VANHOOF C, BACON J, ELLIS A, VINCZE L, WOBRAUSCHEK P . Atomic spectrometry update - a review of advances in X-ray fluorescence spectrometry and its special applications. Journal of Analytical Atomic Spectrometry, 2018,33(9):1413-1431.
[15] SERVIN A, CASTILLO-MICHEL H, HERNANDEZ-VIEZCAS J, DIAZ B, PERALTA-VIDEA J, GARDEA-TORRESDEY J . Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology, 2012,46(14):7637-7643.
[16] PEREZ R, FALCHINI G, VINCENTE F, SOARES L, POLETTI M, SANCHEZ H . A new XRF spectrometer using a crystal monochromator and parallel plates beam guides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019,440:48-53.
[17] KANTOR T . Electrothermal vaporization and laser ablation sample introduction for flame and plasma spectrometric analysis of solid and solution samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001,56(9):1523-1563.
[18] SANTOS D, NUNES L, DE CARVALHO G, GOMES M, DE SOUZA P, LEME F, DOS SANTOS L, KRUG F . Laser-induced breakdown spectroscopy for analysis of plant materials: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 71-72:3-13.
[19] NIU G, SHI Q, YUAN X, WANG J, WANG X, DUAN Y . Combination of support vector regression (SVR) and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in solid samples using the continuous direct solid sampling (CDSS) technique. Journal of Analytical Atomic Spectrometry, 2018,33(11):1954-1961.
[20] XING Z, WANG J A, HAN G J, KUERMAITI B, ZHANG S C, ZHANG X R . Depth profiling of nanometer coatings by low temperature plasma probe combined with inductively coupled plasma mass spectrometry. Analytical Chemistry, 2010,82(13):5872-5877.
[21] XING Z, YANG M, GUO W, JIN L L, LIU Z F, HU S H . Elemental imaging method based on a dielectric barrier discharge probe coupled with inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,147:141-148.
[22] 李铭, 李健, 陈帅, 杨萌, 黄秀, 冯璐, 范博文, 邢志 . 低温等离子体探针-原子荧光光谱法检测镉元素的方法研究. 分析仪器, 2017,2:53-57.
LI M, LI J, CHEN S, YANG M, HUAMG X, FENG L, FAN B W, XING Z . Determination of cadmium by low temperature plasma probe-atomic fluorescence spectrometry. Analytical Instrumentation, 2017,2:53-57. (in Chinese)
[23] KARANASSIOS V, DROUIN P, REYNOLDS G G . Electrically heated wire-loop,in-torch vaporization (ITV) sample introduction system for ICP-AES with photomultiplier tube detection and ICP-MS. Spectrochimica Acta Part B: Atomic Spectroscopy, 1995,50:4-7.
[24] BADIEI H R, LAI B, KARANASSIOS V . Micro- and nano-volume samples by electrothermal, near - torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma -atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012,77:19-30.
[25] BADIEI H R, LIU C, KARANASSIOS V . Taking part of the lab to the sample: On - site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Microchemical Journal, 2013,108:131-136.
[26] SARDANS J, MONTES F , PEÑUELAS J. Electrothermal atomic absorption spectrometry to determine As, Cd, Cr, Cu, Hg, and Pb in soils and sediments: A review and perspectives. Soil and Sediment Contamination: An International Journal, 2011,20(4):447-491.
[27] 黄亚涛, 毛雪飞, 刘霁欣, 王敏, 张立华, 冯礼, 汤晓艳, 周剑 . 电热蒸发钨丝在线捕获原子荧光光谱法直接测定菠菜中痕量镉. 分析化学, 2013,41(10):1587-1591.
HUANG Y T, MAO X F, LIU J X, WANG M, ZHZNG L H, FENG L, TANG X Y, ZHOU J . Direct determination of ultratrace cadmium in spinach by electrothermal vaporization atomic fluorescence spectrometry using on-line atom trap of tungsten coil. Chinese Journal of Analytical Chemistry, 2013,41(10):1587-1591. (in Chinese)
[28] COSTLEY C T, MOSSOP K F, DEAN J R, GARDEN L M, MARSHALL J, CARROLL J . Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Analytical Chemica Acta, 2000,405(1/2):179-183.
[29] BELARRA M, RESANO M, VANHAECKE F, MOENS L . Direct solid sampling with electrothermal vaporization/atomization: what for and how? TrAC-Trends in Analytical Chemistry, 2002,21(12):828-839.
[30] RESANO M, VANHAECKE F, DE LOOS-VOLLEBREGT M T C . Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry-a critical review with focus on solid sampling and slurry analysis. Journal of Analytical Atomic Spectrometry, 2008,23(11):1450-1475.
[31] REYES M N M, CAMPOS R C . Determination of copper and nickel in vegetable oils by direct sampling graphite furnace atomic absorption spectrometry. Talanta, 2006,70(5):929-932.
[32] FRIESE K C, HUANG M D, SCHLEMMER G, KRIVAN V . A two-step atomizer system using a transversely heated furnace with Zeeman background correction: Design and first solid sampling applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006,61(9):1054-1062.
[33] 张岩, 吕品, 李挥, 王多, 刘敬泽 . 涂钽石墨管-石墨炉原子吸收法测定食品中铝含量. 食品科学, 2008,29(11):498-500.
ZHANG Y, LÜ P, LI H, WANG D, LIU J Z . Determination of aluminum in food with tantalum-coated graphite tube-graphite furnace atomic absorption spectrometry. Food Science, 2008,29(11):498-500. (in Chinese)
[34] CHEN S Z, LU D B, XU Q Y . Electrothermal Vaporization in inductively coupled plasma atomic emission spectrometry for direct multielement analysis of food samples with slurry sampling. Canadian Analytical Science and Spectroscopy, 2004,49(5):290-295.
[35] KAVEH F, BEAUCHEMIN D . Improvement of the capabilities of solid sampling ETV-ICP-OES by coupling ETV to a nebulisation/pre- evaporation system. Journal of Analytical Atomic Spectrometry, 2014,29(8):1371-1377.
[36] REGO J F, VIRGILIO A, NOBREGA J A, NETO J A G . Determination of lead in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry using direct solid sampling. Talanta, 2012,100:21-26.
[37] VASSILEVA E, BAETEN H, HOENIG M . Advantages of the iridium permanent modifier in fast programs applied to trace-element analysis of plant samples by electrothermal atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2001,369(6):491-495.
[38] MELLO P A, PEDROTTI M F, CRUZ S M, MULLER E I, DRESSLER V L, FLORES E M M . Determination of rare earth elements in graphite by solid sampling electrothermal vaporization- inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2015,30(10):2048-2055.
[39] WU C H, JIANG S J, SAHAYAM A C . Using electrothermal vaporization inductively coupled plasma mass spectrometry to determine S, As, Cd, Hg, and Pb in fuels. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,147:115-120.
[40] TINAS H, OZBEK N, AKMAN S . Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,140:73-75.
[41] SOARES B M, SANTOS R F, BOLZAN R C, MULLER E I, PRIMEL E G, DUARTE F A . Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, 2016,160:454-460.
[42] FENG L, LIU J X . Solid sampling graphite fibre felt electrothermal atomic fluorescence spectrometry with tungsten coil atomic trap for the determination of cadmium in food samples. Journal of Analytical Atomic Spectrometry, 2010,25(7):1072-1078.
[43] BRUHN C G, HUERTA V N, NEIRA J Y . Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2004,378(2):447-455.
[44] JIANG X M, WU P, DENG D Y, GAO Y, HOU X D, ZHENG C B . A compact electrothermal-flame tandem atomizer for highly sensitive atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2012,27(10):1780-1786.
[45] HOU X D, LEVINE K E, SALIDO A, JONES B T, EZER M, ELWOOD S, SIMEONSSON J B . Tungsten coil devices in atomic spectrometry: Absorption, fluorescence, and emission. Analytical Sciences, 2001,17(1):175-180.
[46] OKAMOTO Y . Furnace-fusion system for the direct determination of cadmium in biological samples by inductively coupled plasma atomic emission spectrometry using tungsten boat furnace-sample cuvette technique. Journal of Analytical Atomic Spectrometry, 1999,14(11):1767-1770.
[47] MATSUMOTO A, OSAKI S, KOBATA T, HASHIMOTO B, UCHIHARA H, NAKAHARA T . Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Microchemical Journal, 2010,95(1):85-89.
[48] 李菊兰, 林建奇 . 电热蒸发-直接进样-原子荧光光谱法检测土壤中的汞. 粮食科技与经济, 2017,42(4):49-51.
LI J L, LIN J Q . Determination of Mercury in soil by electrothermal evaporation-direct injection-atomic fluorescence spectrometry. Grain Science and Technology and Economy, 2017,42(4):49-51. (in Chinese)
[49] 孙鹏, 刘海涛, 李崇江, 林建奇, 任晋源, 闫丽明, 李威, 赵慷 . 电热蒸发-直接进样-冷原子吸收光谱法测定土壤以及沉积物中汞. 中国无机分析化学, 2018,8(1):6-10.
SUN P, LIU H T, LI C J, LIN J Q, REN J Y, YAN L M, LI W, ZHAO K . Determination of mercury in soil and sediment by electrothermal evaporation-direct injection-cold atomic absorption spectrometry. Chinese Journal of Inorganic Analytical Chemistry, 2018,8(1):6-10. (in Chinese)
[50] 林建奇, 孙鹏, 李崇江, 闫丽明, 任晋源, 李威, 林达芳 . 镀金石英砂富集-冷原子吸收光谱法测定环境空气中的汞. 化学分析计量, 2018,27(1):55-58.
LIN J Q, SUN P, LI C J, YAN L M, REN J Y, LI W, LIN D F . Determination of mercury in ambient air by gold-plated quartz sand enrichment-cold atomic absorption spectrometry. Chemical Analysis and meterage, 2018,27(1):55-58. (in Chinese)
[51] SHANG D R, ZHAO Y F, ZHAI Y X, NING J S, DUAN D L, ZHOU Y D . Direct determination of lead in foods by solid sampling electrothermal vaporization atomic fluorescence spectrometry. Analytical Sciences, 2016,32(9):1007-1010.
[52] ZHANG Y, MAO X F, LIU J X, WANG M, QIAN Y Z, GAO C L, QI Y H . Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016,118:119-126.
[53] WANG B, FENG L, MAO X F, LIU J X, YU C C, DING L, LI S Q, ZHENG C M, QIAN Y Z . Direct determination of trace mercury and cadmium in food by sequential electrothermal vaporization atomic fluorescence spectrometry using tungsten and gold coil traps. Journal of Analytical Atomic Spectrometry, 2018,33(7):1209-1216.
[54] ZHANG Y, MAO X F, WANG M, GAO C L, QI Y H, QIAN Y Z, TANG X Y, ZHOU J . Direct determination of cadmium in grain by solid sampling electrothermal vaporization atomic fluorescence spectrometry with a tungsten coil trap. Analytical Letters, 2015,48(18):2908-2920.
[55] 龚文杰, 马建明, 赵立达 . 微波消解-石墨炉原子吸收法测定小海鲜产品中的铅和镉. 中国卫生检验杂志, 2011,21(7):1663-1665.
GONG W J, MA J M, ZHAO L D . Determination of lead and cadmium in small seafood products by microwave digestion-graphite furnace atomic absorption spectrometry. Chinese Journal of Health Laboratory Technology, 2011,21(7):1663-1665. (in Chinese)
[56] LI Y C, JIANG S J . Determination of Cu, Zn, Cd and Pb in Fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1998,359(1/2):205-212.
[57] YI Y Z, JIANG S J, SAHAYAM A C . Palladium nanoparticles as the modifier for the d-termination of Zn, As, Cd, Sb, Hg and Pb in biological samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012,27(3):426-431.
[58] CARRION N, ITRIAGO A M, ALVAREZ M A, ELJURI E . Simultaneous determination of lead, nickel, tin and copper in aluminium-base alloys using slurry sampling by electrical discharge and multielement ETAAS. Talanta, 2003,61(5):621-632.
[59] THONGSAW A, SANANMUANG R, UDNAN Y, ROSS G M, CHAIYASITH W C . Speciation of mercury in water and freshwater fish samples using two-step hollow fiber liquid phase microextraction with electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy, 2019,152:102-108.
[60] MAO X F, ZHANG Y, LIU J X, WANG M, QIAN Y Z, ZHANG Z W, QI Y H, GAO C L . Simultaneous trapping of Zn and Cd by a tungsten coil and its application to grain analysis using electrothermal inductively coupled plasma mass spectrometry. RSC Advances, 2016,6(54):48699-48707.
[61] MAO X F, LIU J X, HUANG Y T, FENG L, ZHANG L H, TANG X Y, ZHOU J, QIAN Y Z, WANG M . Assessment of homogeneity and minimum sample mass for cadmium analysis in powdered certified reference materials and real rice samples by solid sampling electrothermal vaporization atomic fluorescence spectrometry. Journal of Agricultural and Food Chemistry, 2013,61(4):848-853.
[62] MAO X F, QI Y H, HUANG J W, LIU J X, CHEN G Y, NA X, WANG M, QIAN Y Z . Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry. Analytical Chemistry, 2016,88(7):4147-4152.
[63] QI Y H, MAO X F, LIU J X, NA X, CHEN G Y, LIU M T, ZHENG C M, QIAN Y Z . In situ dielectric barrier discharge trap for ultrasensitive arsenic determination by atomic fluorescence spectrometry. Analytical Chemistry, 2018,90(10):6332-6338.
[64] 郭旭明, 郭小伟, 黄本立 . 氢化物的气相富集及其在超痕量分析中的应用. 光谱学与光谱分析, 2000(4):533-536.
GUO X M, GUO X W, HUANG B L .Gas phase enrichment of hydride and its application in ultra-trace analysis. Spectroscopy and Spectral Analysis, 2000(4):533-536. (in Chinese)
[65] CHEN G Y, LAI B, MAO X F, CHEN T W, CHEN M M . Continuous arsine detection using a peltier-effect cryogenic trap to selectively trap methylated arsines. Analytical Chemistry, 2017,89(17):8678-8682.
[66] YOGARAJAH N, TSAI S S H . Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics. Environmental Science: Water Research & Technology, 2015,1(4):426-447.
[67] SHAMSIPUR M, FATTAHI N, ASSADI Y, SADEGHI M, SHARAFI K . Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop. Talanta, 2014,130:26-32.
[68] HAGIWARA K, INUI T, KOIKE Y, AIZAWA M, NAKAMURA T . Speciation of inorganic arsenic in drinking water by wavelength- dispersive X-ray fluorescence spectrometry after in situ preconcentration with miniature solid-phase extraction disks. Talanta, 2015,134:739-744.
[69] KILINÇ E, BAKIRDERE S, AYDIN F, ATAMAN O Y . In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013,89:14-19.
[70] KILINÇ E, BAKIRDERE S, AYDIN F, ATAMAN O Y . Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012,73:84-88.
[71] KRATZER J, MUSIL S, MARSCHNER K, SVOBODA M, MATOUSEK T, MESTER Z, STURGEON R E, DEDINA J . Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Analytica Chimica Acta, 2018,1028:11-21.
[72] DOČEKAL B, DEDINA J, KRIVAN V . Radiotracer investigation of hydride trapping efficiency within a graphite furnace. Spectrochimica Acta Part B: Atomic Spectroscopy, 1997,52(6):787-794.
[73] SHALTOUT A A, CASTILHO I N B, WELZ B, CARASEK E, MARTENS I B G, MARTENS A, COZZOLINO S M F . Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry. Talanta, 2011,85(3):1350-1356.
[74] FURDÍKOVÁ Z, DOČEKAL B . Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009,64(4):323-328.
[75] ŠÍMA J, RYCHLOVSKÝ P . Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003,58(5):919-930.
[76] COSTLEY C T, MOSSOP K F, DEAN J R, GARDEN L M, MARSHALL J, CARROLL J . Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Analytica Chimica Acta, 2000,405(1/2):179-183.
[77] RIVARO P, IANNI C, SOGGIA F, FRACHE R . Mercury speciation in environmental samples by cold vapour atomic absorption spectrometry with in situ preconcentration on a gold trap. Microchimica Acta, 2007,158(3/4):345-352.
[78] TITRETIR S , KENDÜZLER E, ARSLAN Y, KULA I, BAKIRDERE S, ATAMAN O Y. Determination of antimony by using tungsten trap atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008,63(8):875-879.
[79] CANKUR O, ATAMAN O Y . Chemical vapor generation of Cd and on-line preconcentration on a resistively heated W-coil prior to determination by atomic absorption spectrometry using an unheated quartz absorption cell. Journal of Analytical Atomic Spectrometry, 2007,22(7):791-799.
[80] 王金玉, 黄亚涛, 毛雪飞, 王敏, 焦必宁, 张英 . 钨丝捕获-电热蒸发原子荧光光谱法直接测定饮料中痕量镉. 食品科学, 2013,34(24):131-134.
WANG J Y, HUANG Y T, MAO X F, WAMG M, JIAO B N, ZHANG Y . Direct determination of ultra-trace amounts of cadmium in beverages by tungsten coil trapping electrothermal vaporization atomic fluorescence spectrometry. Food Science, 2013,34(24):131-134. (in Chinese)
[81] XI M Y, LIU R, WU P, XU K L, HOU X D, LV Y . Atomic absorption spectrometric determination of trace tellurium after hydride trapping on platinum-coated tungsten coil. Microchemical Journal, 2010,95(2):320-325.
[82] LIU R, WU P, XU K L, LV Y, HOU X D . Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008,63(6):704-709.
[83] MATUSIEWICZ H, KRAWCZYK M . Determination of nickel by chemical vapor generation in situ trapping flame AAS. Central European Journal of Chemistry, 2011,9(4):648-659.
[84] LIU M T, LIU T P, LIU J X, MAO X F, NA X, DING L, CHEN G Y, QIAN Y Z . Determination of arsenic in biological samples by slurry sampling hydride generation atomic fluorescence spectrometry using in situ dielectric barrier discharge trap. Journal of Analytical Atomic Spectrometry, 2019,34(3):526-534.
[85] ZOU Z R, DENG Y J, HU J, JIANG X M, HOU X D . Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review. Analytica Chimica Acta, 2018,1019:25-37.
[86] BERNHARD W, MARIANNE S J, MICHAEL S, DAVID L S, DAVID A R . Investigation of reactions and atomization of arsine in a heated quartz tube using atomic absorption and mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 1990,45(11):1235-1256.
[87] NA N, ZHANG C, ZHAO M X, ZHANG S C, YANG C D, FANG X, ZHANG X R . Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Journal of Mass Spectrometry, 2007,42(8):1079-1085.
[88] NA N, ZHAO M X, ZHANG S C, YANG C D, ZHANG X R . Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American society for Mass Spectrometry, 2007,18(10):1859-1862.
[89] 刘美彤, 刘霁欣, 毛雪飞, 丁兰 . 介质阻挡放电微等离子体在元素分析中的应用研究. 农产品质量与安全, 2018(4):18-24.
LIU M T, LIU J X, MAO X F, DING L .Application research of dielectric barrier discharge microplasma on elemental analysis. Quality and Safety of Agricultural Products, 2018(4):18-24. (in Chinese)
[90] KRATZER J, BOUSEK J, STURGEON R E, MESTER Z, DEDINA J . Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: method optimization and evaluation of analytical performance. Analytical Chemistry, 2014,86(19):9620-9625.
[91] 毛雪飞, 齐悦涵, 王世光, 刘霁欣, 王敏, 钱永忠 . 介质阻挡放电在农业领域的应用研究进展. 农业机械学报, 2016,47(4):216-227.
MAO X F, QI Y H, WANG S G, LIU J X, WANG M, QIAN Y Z . Review for application of dielectric barrier discharge in agriculture. Transactions of the Chinese Society of Agricultural Machinery, 2016,47(4):216-227. (in Chinese)
[92] LI S P, MA X L, JIANG Y Y, CAO X H . Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge. Ecotoxicology and Environmental Safety, 2014,106:146-153.
[93] GUSHCHIN A A, GRINEVICH V I, IZVEKOVA T V, KVITKOVA E Y, TYUKANOVA K A, RYBKIN W . The destruction of carbon tetrachloride dissolved in water in a dielectric barrier discharge in oxygen. Plasma Chemistry and Plasma Processing, 2019,39(2):461-473.
[94] TORMEN L, GIL R A, FRESCURA V L A, MARTINEZ L D, CURTIUS A J . The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid. Analytica Chimica Acta, 2012,717:21-27.
[95] LI Y C, JIANG S J . Determination of Cu, Zn, Cd and Pb in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1998,359(1/2):205-212.
[96] ARAUJO R R O, OLESZCZUK N, RAMPAZZO R T, COSTA P A, SILVA M M, VALE M G R, WELZ B, FERREIRA S L C . Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry. Talanta, 2008,77(1):400-406.
[97] SAVIO M, CERUTTI S, MARTINEZ L D, SMICHOWSKI P, GIL R A . Study of matrix effects and spectral interferences in the determination of lead in sediments, sludges and soils by SR-ETAAS using slurry sampling. Talanta, 2010,82(2):523-527.
[98] KATAOKA H, OKAMOTO Y, TSUKAHARA S, FUJIWARA T, ITO K . Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES). Analytica Chimica Acta, 2008,610(2):179-185.
[99] KARANASSIOS V, ABDULLA M, HORLICK G . The application of chemical modification in direct sample insertion-inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy,1990, 45(1/2):119-129.
[100] 邓勃 . 石墨炉原子吸收光谱分析中化学改进技术的进展. 现代科学仪器, 2009,1(1):100-115.
DENG B . Recent development of chemical modification technique in graphite furnace atomic absorption spectrometry. Modern Scientific Instruments, 2009,1(1):100-115. (in Chinese)
[101] 朱霞石, 胡斌, 何蔓, 江祖成 . 8-羟基喹啉在ETAAS和ETV-ICP- AES测定铬形态中基体改进作用的比较研究. 分析科学学报, 2005,21(1):1-4.
ZHU X S, HU B, HE M, JIANG Z C . Comparative study on chemical modification of 8-oxin determination of Cr(Ⅲ)and Cr(Ⅵ)by ETAAS and ETV-ICP-AES. Journal of Analytical Science, 2005, 21(1):1-4. (in Chinese)
[102] TSENG Y J, LIU C C, JIANG S J . Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Analytica Chimica Acta, 2007,588(2):173-178.
[103] DOBROWOLSKI R . Slurry sampling for the determination of thallium in soils and sediments by graphite furnace atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2002,374(7/8):1294-1300.
[104] XIE Y C, TANG Y Q . Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Advances in Catalysis, 1990, 37:1-43.
[105] SHUTTLER I, FEUERSTEIN M, SCHLEMMER G . Communication. Long-term stability of a mixed palladium-iridium trapping reagent for in situ hydride trapping within a graphite electrothermal atomizer. Journal of Analytical Atomic Spectrometry, 1992,7(8):1299-1301.
[106] OLESZCZUK N, CASTRO J T , DA SILVA M M, KORN M D A, WELZ B, VALE M G R. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta, 2007,73(5):862-869.
[107] VALE M, SILVA M M, WELZ B, LIMA E C . Determination of cadmium, copper and lead in mineral coal using solid sampling graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001,56(10):1859-1873.
[108] DA SILVA A F, BORGES D, LEPRI F, WELZ B, CURTIUS A, HEITMANN U . Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2005,382(8):1835-1841.
[109] JIN L L, YUAN S S, LI M, XING Z, LIU Z F, HU S H . Dielectric barrier discharge atomizer for mercury speciation by HPLC-CVG atomic fluorescence spectrometry. Atomic Spectroscopy, 2019,40(2):69-73.
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[5] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[6] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[7] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[8] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[9] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[10] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[11] LI YuHao,WANG HongYe,CUI ZhenLing,YING Hao,QU XiaoLin,ZHANG JunDa,WANG XinYu. Spatial-Temporal Variation of Cultivated Land Soil Basic Productivity for Main Food Crops in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3960-3969.
[12] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[13] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[14] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[15] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!