Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4333-4349.doi: 10.3864/j.issn.0578-1752.2019.23.014

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF APPLE • Previous Articles     Next Articles

Genome-Wide Identification and Expression Pattern Analysis of NLP (Nin-Like Protein) Transcription Factor Gene Family in Apple

WANG Xun,CHEN XiXia,LI HongLiang,ZHANG FuJun,ZHAO XianYan,HAN YuePeng,WANG XiaoFei(),HAO YuJin()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2019-04-28 Accepted:2019-06-26 Online:2019-12-01 Published:2019-12-01
  • Contact: XiaoFei WANG,YuJin HAO E-mail:xfwang2004@163.com;haoyujin@sdau.edu.cn

Abstract:

【Objective】The study was carried out to explore the whole genome characteristics and expression patterns of NLP transcription factors in apple, and further understand its structural characteristics and mechanism.【Method】Based on the local BLAST database and Pfam database, the members of NLP transcription factor family in the whole genome of apple were identified by using two query strategies with blastp and hmmsearch. Through strict filtration and confirmation, the results were used for further analysis, and analysis mainly divides into three parts, including NLP proteins analysis, analysis of NLP genes and NLP expression analysis in apple. Programs or softwares, such as ProtParam, Clustal Omega, MEGA7, MEME 5.0.2, SOPMA, Phyre 2, WoLF PSORT and STRING, were used for protein analysis, online tools included MG2C, GSDS2.0, PlantCARE, psRNATarget, were used for gene analysis, and the expression of MdNLP gene was quantitatively detected by qRT-PCR.【Result】6 NLP members were identified from apple protein databases, which were classified into three categories by phylogenetic analysis: I, II and III. The protein secondary structure was dominated by random coil, followed by alpha-helix, and the smallest proportion was beta-turn. The prediction of subcellular localization was located in the nucleus, which was consistent with the characteristics of transcription factors. Chromosome localization showed that five genes (except MDP0000584547) were located on four chromosomes. Promoter analysis revealed a large number of cis-acting elements related to hormone and stress response, suggesting that MdNLP genes might be involved in the regulation of hormone and stress signals. In addition, a nitrogen-responsive GCN4 element was also identified, further indicating that such transcription factors were closely related to nitrogen. By quantitative detection, the pattern which NLP family had high expression in stem and leaf of apple was revealed. And the expression analysis results also confirmed that MdNLP genes responded to nitrogen starvation and drought stress, and so on.【Conclusion】Through the apple genome analysis, 6 NLP transcription factors were found; the analysis of structure and conserved domain of protein for 6 gene suggested that there had a very high similarity and conservation between them, at the same time, they were different in a way; the associated protein network of NLP family in Arabidopsis thaliana were used for MdNLPs, MDP0000132856, which had the highest homology with AtNLP7, might also have complicated features and functions.

Key words: apple, NLP transcription factor, nitrogen signal, bioinformatics

Table 1

Real-time fluorescence quantitative PCR primers for relative expression of NLP gene in apple"

基因Gene 上游引物Forward primer (5′-3′) 下游引物Reverse primer (5′-3′)
MdNLP2 CTATGCATCGAGGAAACAGCTTG CAATTCCCTCACCTTCCTCAAGA
MdNLP3 GAAATGGAGAAAGAGGGCTCTGA TTCAGAAGGGCTTGGATACTTCC
MdNLP4 GTCAGTATGCTCTCGATCCTGATA CAGTAAGATGTGTAGGATGTTGGC
MdNLP5 GCTTGCTTCTGTGGAGACATTAC TCCAGTATGAGTGCTCTGTAAGC
MdActin GGACAGCGAGGACATTCAGC CTGACCCATTCCAACCATAACA

Fig. 1

Multi-sequence alignment and typical conserved domains of NLP proteins between Arabidopsis thaliana and apple"

Fig. 2

Phylogenetic evolution of NLP proteins in apple, Arabidopsis thaliana and rice(a) and conserved motifs of NLP proteins in apple (b) In figure 2-a, the red solid dot represents apple NLP protein, the green solid triangle represents Arabidopsis NLP protein, and the blue solid square represents rice NLP protein"

Table 3

The secondary structure of NLP protein in apple"

蛋白质Protein α-螺旋α-helix β-转角β-turn 无规则卷曲Random coil 延长链Extended strand
MdNLP1 28.69% 3.79% 53.11% 14.41%
MdNLP2 33.94% 5.57% 43.14% 17.35%
MdNLP3 23.40% 6.40% 55.89% 14.32%
MdNLP4 27.46% 5.90% 50.23% 16.41%
MdNLP5 26.52% 4.01% 55.50% 13.98%
MdNLP6 28.33% 6.27% 49.90% 15.49%

Fig. 3

Homologous modeling prediction of the three-level structure of the conservative domain of NLP protein in apple"

Table 2

NLP family gene, protein characteristic and prediction of subcellular location in apple"

基因
Gene
登录号
Accession number
基因长度
Gene length
编码序列长度
CDS length
氨基酸数目
Size of aa
分子量
MW (D)
等电点
pI
亚细胞定位
Subcellular localization
MdNLP1 MDP0000788505 3856 2460 819 90889.49 6.25 细胞核 Nucleus
MdNLP2 MDP0000265619 9510 5121 1706 189398.44 7.9 细胞核 Nucleus
MdNLP3 MDP0000246881 9366 4152 1383 153424.77 7.88 细胞核 Nucleus
MdNLP4 MDP0000239938 8796 3990 1329 147220.18 5.5 细胞核 Nucleus
MdNLP5 MDP0000132856 4454 2949 982 107556.64 5.45 细胞核 Nucleus
MdNLP6 MDP0000584547 10212 3159 1052 117304.32 5.96 细胞核 Nucleus

Fig. 4

Protein interaction network of MdNLPs constructed by referring to AtNLPs The name of apple homologous proteins are highlighted in red"

Fig. 5

Chromosome localization (a) and gene structure analysis (b) of NLP gene in apple"

Table 4

Statistics list of GO classification of NLP gene in apple"

GO分类GO classification GO条目GO term 基因数目Gene number 描述Description
分子功能
Molecular Function
GO:0005524
GO:0017111
GO:0016887
GO:0000166
GO:0008270
GO:0003676
1
1
1
3
2
2
ATP结合 ATP binding
核苷三磷酸酶活性 Nucleoside-triphosphatase activity
ATP酶活性 ATPase activity
核苷酸结合 Nucleotide binding
锌离子结合 Zinc ion binding
核酸结合 Nucleic acid binding
生物途径 Biological Process GO:0006810 1 转运 Transport
细胞组分
Cellular Component
GO:0016020
GO:0016021
1
1
膜 Membrane
膜的整体成分 Integral component of membrane

Table 5

Prediction of cis-acting elements of promoter of NLP gene in apple"

基因
Gene
脱落酸
ABRE
低氧
ARE
茉莉酸甲酯
CGTCA
乙烯
ERE
赤霉素
GARE
氮素
GCN4
干旱
MBS
防御和胁迫
TC-rich repeats
水杨酸
TCA
生长素
TGA
病原菌
W-box
MdNLP1 0/1 2/0 1/1 1/1 0/1 1/0 1/0 0/1
MdNLP2 2/3 1/0 3/0 0/1 0/1 0/1
MdNLP3 0/2 0/3 0/1 0/1 0/1 0/1 1/0 0/1
MdNLP4 0/2 0/3 1/0 1/1 1/1 1/1 0/1
MdNLP5 1/1 2/0 1/2 0/1 0/1 1/0 0/1 0/1
MdNLP6 4/3 1/0 3/3 1/0 0/1

Table 6

The prediction of miRNA which response nitrogen associated with NLP in apple"

靶基因
Target gene
miRNA 抑制类型
Inhibition
靶基因
Target gene
miRNA 抑制类型
Inhibition
靶基因
Target gene
miRNA 抑制类型
Inhibition
MdNLP2 mdm-miR171a 直接降解Cleavage MdNLP5 mdm-miR169e 直接降解Cleavage MdNLP5 mdm-miR395e 直接降解Cleavage
mdm-miR171b 直接降解Cleavage mdm-miR169f 直接降解Cleavage mdm-miR395f 直接降解Cleavage
mdm-miR395a 直接降解Cleavage mdm-miR171c 抑制翻译Translation mdm-miR395g 直接降解Cleavage
mdm-miR395b 直接降解Cleavage mdm-miR171d 抑制翻译Translation mdm-miR395h 直接降解Cleavage
mdm-miR395c 直接降解Cleavage mdm-miR171e 抑制翻译Translation mdm-miR395i 直接降解Cleavage
mdm-miR395d 直接降解Cleavage mdm-miR171g 抑制翻译Translation
mdm-miR395e 直接降解Cleavage mdm-miR171h 抑制翻译Translation
mdm-miR395f 直接降解Cleavage mdm-miR395a 直接降解Cleavage
mdm-miR395g 直接降解Cleavage mdm-miR395b 直接降解Cleavage
mdm-miR395h 直接降解Cleavage mdm-miR395c 直接降解Cleavage
mdm-miR395i 直接降解Cleavage mdm-miR395d 直接降解Cleavage

Fig. 6

Tissue expression analysis of NLP gene in apple"

Fig. 7

Expression analysis of nitrogen starvation response of MdNLP gene"

Fig. 8

Expression analysis of abiotic stress (drought treatment and ABA treatment) of MdNLP gene"

[1] KONISHI M, YANAGISAWA S . Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, 2013,4:1617.
doi: 10.1038/ncomms2621 pmid: 23511481
[2] SCHAUSER L, ROUSSIS A, STILLER J, STOUGAARD J . A plant regulator controlling development of symbiotic root nodules. Nature, 1999,402(6758):191-195.
doi: 10.1038/46058 pmid: 10647012
[3] SCHAUSER L, WIELOCH W, STOUGAARD J . Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. Journal of Molecular Evolution, 2005,60(2):229-237.
doi: 10.1007/s00239-004-0144-2
[4] KUMAR A, BATRA R, GAHLAUT V, GAUTAM T, KUMAR S, SHARMA M, TYAGI S, SINGH K P, BALYAN H S, PANDEY R, GUPTA P K . Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat ( Triticum aestivum L.). PLoS ONE, 2018,13(12):e0208409.
doi: 10.1371/journal.pone.0208409 pmid: 30540790
[5] GE M, LIU Y H, JIANG L, WANG Y C, LV Y D, ZHOU L, LIANG S Q, BAO H B, ZHAO H . Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regulation, 2018,84(1):95-105.
doi: 10.1007/s10725-017-0324-x
[6] 吴翔宇, 许志茹, 曲春浦, 李蔚, 孙琦, 刘关君 . 毛果杨NLP基因家族生物信息学分析与鉴定. 植物研究, 2014,34(1):37-43.
WU X Y, XU Z R, QU C P, LI W, SUN Q, LIU G J . Genome-wide identification and characterization of NLP gene family in Populus trichocarpa. Bulletin of Botanical Research, 2014,34(1):37-43. (in Chinese)
[7] 曹雄军, 卢晓鹏, 熊江, 李静, 吴倩, 周芳芳, 谢深喜 . 枳NLP转录因子克隆及其在不同水分条件下的表达. 中国农业科学, 2016,49(2):381-390.
doi: 10.3864/j.issn.0578-1752.2016.02.018
CAO X J, LU X P, XIONG J, LI J, WU Q, ZHOU F F, XIE X S . Cloning and expression of Poncirus Trifoliata (L.) Raf. NIN-Like transcription factors under different water conditions. Scientia Agricultura Sinica, 2016,49(2):381-390. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.02.018
[8] LIU M, CHANG W, FAN Y H, SUN W, QU C M, ZHANG K, LIU L Z, XU X F, TANG Z L, LI J N, LU K . Genome-wide identification and characterization of NODULE-INCEPTION-LIKE Protein (NLP) family genes in Brassica napus. International Journal of Molecular Sciences, 2018,19(8):2270.
doi: 10.1016/j.gene.2019.144275 pmid: 31809843
[9] MARCHIVE C, ROUDIER F, CASTAINGS L, BRÉHAUT V, BLONDET E, COLOT V, MEYER C, KRAPP A, . Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications, 2013,4:1713.
doi: 10.1038/ncomms2650 pmid: 23591880
[10] YAN D W, EASWARAN V, CHAU V, OKAMOTO M, IERULLO M, KIMURA M, ENDO A, YANO R, PASHA A, GONG Y C, BI Y M, PROVART N, GUTTMAN D, KRAPP A, ROTHSTEIN S J, NAMBARA E . NIN-like protein 8 is a master regulator of nitrate- promoted seed germination in Arabidopsis. Nature Communications, 2016,7:13179.
doi: 10.1038/ncomms13179 pmid: 27731416
[11] LIU K H, NIU Y J, KONISHI M, WU Y, DU H, CHUNG H S, LI L, BOUDSOCQ M, MCCORMACK M, MAEKAWA S, ISHIDA T, ZHANG C, SHOKAT K, YANAGISAWA S, SHEEN J . Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature, 2017,545(7654):311.
doi: 10.1038/nature22077 pmid: 28489820
[12] YU L H, WU J, TANG H, YUAN Y, WANG S M, WANG Y P, ZHU Q S, LI S G, XIANG C B . Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Scientific Reports, 2016,6:27795.
doi: 10.1038/srep27795 pmid: 27293103
[13] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, RI A D, GOREMYKIN V , et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010,42(10):833-839.
doi: 10.1038/ng.654 pmid: 20802477
[14] JUNG S, LEE T, CHENG C H, BUBLE K, ZHENG P, YU J, HUMANN J, FICKLIN S P, GASIC K, SCOTT K, FRANK M, RU S, HOUGH H, EVANS K, PEACE C, OLMSTEAD M, DEVETTER L W, MCFERSON J, COE M, WEGRZYN J L, STATON M E, ABBOTT A G, MAIN D . 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research, 2018,47(D1):D1137-D1145.
doi: 10.1093/nar/gky1000 pmid: 30357347
[15] FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L L, TATE J, PUNTA M . Pfam: The protein families database. Nucleic Acids Research, 2013,42(D1):D222-D230.
doi: 10.1093/nar/gkt1223 pmid: 24288371
[16] KUMAR S, STECHER G, TAMURA K . MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[17] BAILEY T L, WILLIAMS N, MISLEH C, LI W W . MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 2006,34(suppl_2):W369-W373.
doi: 10.1093/nar/gkl198 pmid: 16845028
[18] KELLEY L A, MEZULIS S, YATES C M, WASS M N, STERNBERG M J E . The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 2015,10(6):845-858.
doi: 10.1038/nprot.2015.053 pmid: 25950237
[19] HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K . WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007,35(suppl_2):W585-W587.
doi: 10.1104/pp.110.156851 pmid: 20647376
[20] SZKLARCZYK D, GABLE A L, LYON D, JUNGE A, WYDER S, HUERTA-CEPAS J, SIMONOVIC M, DONCHEVA N T, MORRIS J H, BORK P, JENSEN L J, VON MERING C . STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2018,47(D1):D607-D613.
doi: 10.1093/nar/gky1131 pmid: 30476243
[21] HU B, JIN J P, GUO A Y, ZHANG H, LUO J C, GAO G . GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2014,31(8):1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[22] LESCOT M DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S . PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327
[23] DAI X B, ZHUANG Z H, ZHAO P X C . psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Research, 2018,46(W1):W49-W54.
doi: 10.1093/nar/gky316 pmid: 29718424
[24] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] CHARDIN C, GIRIN T, ROUDIER F, MEYER C, KRAPP A . The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 2014,65(19):5577-5587.
doi: 10.1093/jxb/eru261
[26] MÜLLER M, KNUDSEN S . The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. The Plant Journal, 1993,4(2):343-355.
doi: 10.1046/j.1365-313x.1993.04020343.x pmid: 8220485
[27] 赵勐 . 玉米氮素营养相关小分子非编码RNA的克隆及miRNA169的功能鉴定[D]. 北京: 中国农业大学, 2014.
ZHAO M . Cloning of small RNAs related to nitrogen nutrition in maize and functional analysis of miRNA169[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[28] 许振华 . 玉米低硝酸盐响应microRNA及靶基因鉴定与验证[D]. 北京: 中国农业科学院, 2011.
doi: 10.1093/aob/mct133 pmid: 23788746
XU Z H . Identification and verification of microRNAs and their targets on response low nitrate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
doi: 10.1093/aob/mct133 pmid: 23788746
[29] 严莉, 王翠平, 陈建伟, 乔改霞, 李健 . 基于转录组信息的黑果枸杞MYB转录因子家族分析. 中国农业科学, 2017,50(20):3991-4002.
doi: 10.3864/j.issn.0578-1752.2017.20.013
YAN L, WANG C P, CHEN J W, QIAO G X, LI J . Analysis of MYB transcription factor family based on transcriptome sequencing in Lycium ruthenicum Murr. Scientia Agricultura Sinica, 2017,50(20):3991-4002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.013
[30] 姜秀明, 牛义岭, 许向阳 . 番茄NAC基因家族的系统进化及表达分析. 分子植物育种, 2016,14(8):1948-1964.
JIANG X M, NIU Y L, XU X Y . Phylogenetic evolution and expression analysis of NAC gene family in tomato ( Solanum lycopersicum). Molecular Plant Breeding, 2016,14(8):1948-1964. (in Chinese)
[31] MAO K, DONG Q L, LI C, LIU C H, MA F W . Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 2017,8:480.
doi: 10.3389/fpls.2017.00480 pmid: 28443104
[32] 孙明岳, 周君, 谭秋平, 付喜玲, 陈修德, 李玲, 高东升 . 苹果bZIP转录因子家族生物信息学分析及其在休眠芽中的表达. 中国农业科学, 2016,49(7):1325-1345.
doi: 10.3864/j.issn.0578-1752.2016.07.010
SUN M Y, ZHOU J, TAN Q P, FU X L, CHEN X D, LI L, GAO D S . Analysis of basic leucine zipper genes and their expression during bud dormancy in apple ( Malus×domestica). Scientia Agricultura Sinica, 2016,49(7):1325-1345. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.07.010
[33] 董蔚, 邬培祥, 杨宁, 刘锡江, 宋玉光 . 紫花苜蓿盐胁迫响应WRKY转录因子的克隆及表达特征分析. 植物生理学报, 2018,54(9):1481-1489.
DONG W, WU P X, YANG N, LIU X J, SONG Y G . Cloning and expression analysis of WRKY transcription factor involved in salinity stress in alfalfa. Plant Physiology Journal, 2018,54(9):1481-1489. (in Chinese)
[34] 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香 . 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013,46(12):2501-2513.
doi: 10.3864/j.issn.0578-1752.2013.12.011
WANG X F, LIU X, SU L, SUN Y J, ZHANG S Z, HAO Y J, YOU C X . Identification, evolution and expression analysis of the LBD gene family in tomato. Scientia Agricultura Sinica, 2013,46(12):2501-2513. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.011
[35] CASTAINGS L, CAMARGO A, POCHOLLE D, GAUDON V, TEXIER Y, BOUTET-MERCEY S, TACONNAT L, RENOU J P, DANIEL-VEDELE F, FERNANDEZ E, MEYER C, KRAPP A . The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal, 2009,57(3):426-435.
doi: 10.1111/j.1365-313X.2008.03695.x pmid: 18826430
[36] LIN J S, LI X L, LUO Z P, MYSORE K S, WEN J Q, XIE F . NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nature Plants, 2018,4(11):942-952.
doi: 10.1038/s41477-018-0261-3 pmid: 30297831
[37] GUAN P Z, RIPOLL J J, WANG R H, VUONG L, BAILEY-STEINITZ L J, YE D N, CRAWFORD N M . Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences of the USA, 2017,114(9):2419-2424.
doi: 10.1073/pnas.1615676114 pmid: 28202720
[38] 朱新宇, 吕万胜, 余春梅, 汪保华 . 根瘤感受样基因的进化: 结构歧异与功能分化. 植物学报, 2013,48(5):519-530.
doi: 10.3724/SP.J.1259.2013.00519
ZHU X Y, LÜ W S, YU C M, WANG B H . Evolution of nodular inception-like genes: Structural divergence and functional differentiation. Chinese Bulletin of Botany, 2013,48(5):519-530. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00519
[39] YANAGISAWA S . Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Science, 2014,229:167-171.
doi: 10.1016/j.plantsci.2014.09.006
[40] KONISHI M, YANAGISAWA S . Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. Journal of Experimental Botany, 2014,65(19):5589-5600.
doi: 10.1093/jxb/eru267
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[9] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[10] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[11] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[12] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[13] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[14] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[15] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!