Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3733-3747.doi: 10.3864/j.issn.0578-1752.2019.21.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map

YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2019-05-28 Accepted:2019-07-11 Online:2019-11-01 Published:2019-11-12
  • Contact: QingYuan ZHOU E-mail:zhouqy2005@163.com

Abstract:

【Objective】 Rapeseed oil is widely used in cooking, food processing and industrial production. Therefore, improving the fatty acid composition of rapeseed oil according to the specific production objective is an important goal of rapeseed breeding. In this study, QTL mapping of main fatty acid composition in Brassica napus under two environments was conducted, which was designed to search for the QTL and related candidate genes of fatty acid components in Brassica napus.【Method】 The high generation recombinant inbred lines (RILs) were used as experiment materials, which were derived from synthetic 10D130 and conventional variety Zhongshuang11, and field experiments were conducted in 2016-2017 and 2017-2018 with two different environments in Beibei District of Chongqing City, respectively. After self-pollinated seeds were harvested each year, fatty acid components of seeds were measured by GC with three technical repeats. Then, the RIL population genotype was analyzed with the rapeseed 6K SNP chip array. The DNA preparation and the chip preparation were processed strictly according to Infinium HD Assay Ultra manual of Illumina Inc. The SNP linkage map was constructed by using JoinMap 4.0 program with minimum LOD 2.0. QTL mapping of main fatty acid composition was conducted by composite interval mapping using software Windows QTL IciMapping V4.1.【Result】 In the two environments, the differences of parents’ traits and RILs population’s traits reached significant or extremely significant levels, and the contents of six fatty acids showed continuous distribution, which were suitable for the detection of QTLs. The reference SNP genetic map contains 1 897 polymorphic SNP markers, covering 3 214.19 cM of Brassica napus genome with an average map distance of 1.69 cM. Twenty-three QTLs loci of fatty acid components on 8 chromosomes were detected in two environments. The QTLs loci related to stearic acid, oleic acid, linoleic acid, linolenic acid, eicosapentaenoic acid and erucic acid contents were 6, 3, 4, 5, 2 and 3, respectively. And the “enrichment regions” of multiple fatty acid contents were found on chromosomes A05, A08 and C03. Meantime, the main QTL with overlapping linoleic acid and linolenic acid content was detected on A05 chromosome, showing the same additive effect. And the main effect QTLs, oleic acid with overlapping contents of eicosenic acid and erucic acid were detected on A08 and C03, which was opposite to the additive effect of eicosenic acid and erucic acid. Twenty-two candidate genes of fatty acid metabolic were found underlying confidence intervals of seventeen QTLs by comparing with homologous genes in Arabidopsis thaliana. These genes regulate lipid biosynthesis and metabolism through encoding fatty acid desaturase, total carboxylase synthase, carbon chain lengthening enzyme and participating in acyl coenzyme A biosynthesis. 【Conclusion】 The fatty acid composition QTL under two environments were mapped accurately with the 6K SNP chip of rapeseed, and the “enrichment regions” of multiple fatty acid QTLs on chromosomes A05, A08 and C03 were screened. Compared with Arabidopsis thaliana fatty acid metabolic genes, candidate genes for fatty acid metabolism in this population were detected, which could be used for improving fatty acid composition in rapeseed.

Key words: Brassica napus, fatty acid, genetic map, QTL, candidate gene

Table 1

Changes of fatty acids content under two different environments"

环境
Environment
性状
Trait
亲本 Parents RIL群体 RIL populations
10D130 ZS11 最大值
Max
最小值
Min
均值
Average
标准差
SE
变异系数
CV (%)
17Cq C18:0 1.21a 2.84b 6.17 1.00 1.77** 0.61 34.47
C18:1 18.83A 64.27B 83.15 13.17 38.25** 19.11 49.95
C18:2 10.86A 23.27B 31.18 6.15 14.49** 4.50 31.04
C18:3 7.68a 9.55b 12.79 4.04 8.65* 1.59 18.35
C20:1 8.08A 0.07B 19.33 0.00 10.26** 5.86 57.12
C22:1 53.34A 0.00B 57.96 0.00 26.56** 17.70 66.62
18Cq C18:0 1.52a 2.68b 4.73 0.47 1.98** 0.56 28.13
C18:1 17.91A 63.03B 78.79 12.69 39.14** 18.03 46.07
C18:2 12.08A 22.94B 26.41 9.27 15.47** 3.94 25.46
C18:3 8.92a 10.44b 12.20 6.14 8.89* 1.36 15.27
C20:1 8.86A 0.91B 19.99 0.70 11.20** 6.43 57.44
C22:1 50.71A 0.00B 51.62 0.00 23.02** 15.79 68.59

Fig. 1

Frequency distribution of stearic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid and erucic acid content from the RIL population in two different environments P1, P2 and P'1, P'2 indicated the fatty acid content of two parents under 17Cq and 18Cq environment respectively"

Table 2

Correlation analysis of fatty acids content in two different environments"

测定指标 Index C18:0 C18:1 C18:2 C18:3 C20:1 C22:1
C18:0 0.58** 0.18* -0.32** -0.28** -0.59**
C18:1 0.65** 0.36** -0.13 -0.68** -0.95**
C18:2 0.03 0.43** 0.45** -0.50** -0.52**
C18:3 -0.29** 0.11 0.49** -0.12 -0.01
C20:1 -0.31** -0.77** -0.57** -0.28** 0.56**
C22:1 -0.64** -0.96** -0.54** -0.20** 0.64**

Table 3

QTLs for main fatty acids content in two different environments"

性状
Trait
环境
Envi.
QTL 染色体
Chr.
标记区间
Position
置信区间1)
Confidence interval
LOD 加性效应
Additive effect
贡献率
R2(%)
C18:0 17Cq qA08ST-1 A08 S-95505568-S-95506507 43.27-48.50 6.13 -0.22 14.00
qC03ST C03 S-177827612-S-95636886 216.25-219.73 5.11 -0.20 11.59
18Cq qA01ST A01 S-95637833-S-95664701 116.00-118.62 4.94 0.13 5.08
qA05ST A05 S-177830309-S-86232724 107.59-110.16 6.07 0.15 6.27
qA08ST-2 A08 S-95506569-S-95506120 29.90-31.07 20.45 -0.29 25.49
qA09ST A09 S-182142581-S-182167880 224.50-229.51 8.76 -0.18 9.45
qC03ST C03 S-95665809-S-95636886 215.70-219.73 8.31 -0.17 9.12
C18:1 17Cq qA05OL A05 S-182087654-S-86232724 106.33-110.16 4.59 3.81 3.80
qA08OL A08 S-95507415-S-95663297 26.79-30.00 31.31 -11.42 34.39
qC03OL C03 S-105305847-S-182158964 218.48-222.84 29.65 -10.95 31.80
18Cq qA05OL A05 S-182087654-S-86232724 106.33-110.16 8.40 3.91 5.70
qA08OL A08 S-95507415-S-95663297 26.79-30.00 31.83 -8.66 28.28
qC03OL C03 S-105338742-S-182138971 219.51-224.50 42.44 -10.75 43.68
C18:2 17Cq qA05LI A05 S-182087654-S-86232724 106.33-110.16 18.43 -2.37 22.67
qA08LI A08 S-177633794-S-95506569 25.61-29.50 8.45 -1.48 8.91
qC03LI-1 C03 S-105306222-S-95637726 235.80-239.65 14.65 -2.06 17.00
qC03LI-2 C03 S-105309588-S-105307276 250.03-253.95 6.28 1.28 6.69
18Cq qA05LI A05 S-182087654-S-86232724 106.33-110.16 19.71 -1.84 25.25
qA08LI A08 S-95507415-S-95663297 26.79-30.00 9.44 -1.18 10.49
qC03LI-1 C03 S-95637910-S-105307365 237.50-239.83 11.09 -1.30 12.56
C18:3 17Cq qA02LN A02 S-95666343-S-95638378 55.50-64.85 4.96 -0.44 8.49
qC07LN C07 S-105339086-S-179307020 6.50-11.97 5.84 0.51 11.66
18Cq qA05LN A05 S-182087654-S-86232724 106.33-110.16 33.12 -1.12 23.66
qA09LN A09 S-182142581-S-182167880 224.50-229.51 8.28 0.47 4.24
qA10LN A10 S-177910390-S-95636447 59.94-63.16 4.90 0.35 2.37
C20:1 17Cq qC03EI C03 S-105338742-S-182138971 219.51-224.50 7.45 2.27 17.23
18Cq qA08EI A08 S-95507415-S-95663297 26.79-30.00 6.07 2.14 11.18
qC03EI C03 S-105338742-S-182138971 219.51-224.50 11.44 3.05 22.69
C22:1 17Cq qA08ER-1 A08 S-95506362-S-95664454 10.05-12.58 11.30 5.00 9.39
qA08ER-2 A08 S-95507415-S-95663297 26.79-30.00 27.90 9.13 32.21
qC03ER C03 S-105305847-S-182158964 218.48-222.84 32.17 9.62 36.01
18Cq qA08ER-2 A08 S-95507415-S-95663297 26.79-30.00 96.68 17.53 67.26
qC03ER C03 S-105305847-S-182158964 218.48-222.84 50.41 8.64 16.45

Fig. 2

Putative QTL locations of fatty acid content on the SNP genetic map"

Table 4

Candidate genes in QTL confidence interval of fatty acid content in B. uapus by alignment with related genes in Arabidopsis thaliana"

染色体
Chr.
预测基因
Gene prediction
物理位置
Physical position
(Mb)
拟南芥相关基因 Related genes in A. thaliana
基因名称
Gene name
基因登录号
Gene accession
E值
E-value
描述
Description
A01 BnaA01g27100D 18.94 HAL3A AT3G18030 E-60 辅酶A生物合成过程 Coenzyme A biosynthetic process
BnaA01g27120D 18.94 HAL3B AT1G48605 5E-23 辅酶A生物合成过程 Coenzyme A biosynthetic process
A02 BnaA02g13270D 7.29 LACS9 AT1G77590 2E-52 长链酰基辅酶A合成酶9 Long chain acyl-CoA synthetase 9
BnaA02g13310D 7.31 KCR1 AT1G67730 2E-74 β-酮酰辅酶A还原酶1 Beta-ketoacyl-CoA reductase 1
BnaA02g13630D 7.49 HCS1 AT2G25710 2E-58 全羧化酶合成酶1 Holocarboxylase synthase 1
A05 BnaA05g26430D 19.37 ALIS1 AT3G12740 2E-93 参与磷脂转运 Involved in phospholipid transport
BnaA05g26900D 19.54 FAD2 AT3G12120 0 不饱和脂肪酸生物合成过程
Unsaturated fatty acid biosynthetic process
BnaA05g25110D 18.65 ATOBL1 AT3G14360 E-156 脂质代谢过程 Lipid metabolic process
BnaA05g25210D 18.70 GLIP3 AT1G53990 4E-17 脂质分解过程 Lipid catabolic process
BnaA05g25220D 18.70 GLIP4 AT3G14225 E-117 脂质分解过程 Lipid catabolic process
BnaA05g26460D 19.38 DALL4 AT1G06800 2E-27 脂质代谢过程 Lipid metabolic process
A08 BnaA08g09510D 9.09 OGOX2 AT4G20840 0 FAD-结合小檗碱家族蛋白
FAD-binding Berberine family protein
BnaA08g11130D 10.19 FAE1 AT4G34520 0 3-酮酰辅酶A合成酶18 3-ketoacyl-CoA synthase 18
BnaA08g11140D 10.19 KCS17 AT4G34510 0 3-酮酰辅酶A合成酶17 3-ketoacyl-CoA synthase 17
BnaA08g11440D 10.39 FAR3 AT4G33790 8E-46 脂肪酸还原酶3 FATTY ACID REDUCTASE 3
BnaA08g11650D 10.51 MCCB AT4G34030 E-119 3-甲基巴豆酰辅酶A羧化酶
3-methylcrotonyl-CoA carboxylase
BnaA08g12370D 11.04 WIN2 AT4G31750 3E-71 编码HopW1-1-相互作用蛋白2
Encodes HopW1-1-Interacting protein 2
A09 BnaA09g39290D 27.87 SLD1 AT3G61580 0 脂肪酸去饱和酶 Fatty acid desaturase
A10 BnaA10g10590D 9.01 未知Unknown AT5G56350 0 丙酮酸激酶家族蛋白 Pyruvate kinase family protein
BnaA10g10730D 9.08 END2 AT5G56480 4E-62 脂质转移蛋白 Lipid-transfer protein
C03 BnaC03g63920D 53.41 OGOX2 AT4G20840 0 FAD-结合小檗碱家族蛋白
FAD-binding Berberine family protein
BnaC03g63930D 53.42 BBE22 AT4G20860 5E-23 FAD-结合小檗碱家族蛋白
FAD-binding Berberine family protein
BnaC03g64130D 53.56 SPHK2 AT4G21534 4E-55 二酰基甘油激酶家族蛋白
Diacylglycerol kinase family protein
BnaC03g65980D 55.68 FAE1 AT4G34520 0 3-酮酰辅酶A合成酶18 3-ketoacyl-CoA synthase 18
BnaC03g66040D 55.81 KCS17 AT4G34510 0 3-酮酰辅酶A合成酶17 3-ketoacyl-CoA synthase 17
BnaC03g66380D 56.21 FAR3 AT4G33790 3E-49 脂肪酸还原酶3 FATTY ACID REDUCTASE 3
BnaC03g67410D 57.10 WIN2 AT4G31750 2E-73 编码HopW1-1-相互作用蛋白2
Encodes HopW1-1-Interacting protein 2
[1] 官春云 . 中国油菜产业发展方向. 粮食科技与经济,2011,36(2):5-6.
GUAN CY. Development direction of rapeseed industry in China. Grain Science and Technology and Economy , 2011,36(2):5-6. (in Chinese)
[2] 沈金雄, 傅廷栋, 涂金星, 马朝芝. 中国油菜生产及遗传改良潜力与油菜生物柴油发展前景.华中农业大学学报 , 2007,26(6):894-899.
SHEN JX, FU T D,TU J X,MA C Z . Potential in production and genetic improvement of rapeseed and prospect for rape oil-based biodiesel in China.Journal of Huazhong Agricultural University, 2007,26(6):894-899. (in Chinese)
[3] CHANG NW ,HUANG P C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids, 1998,33: 481-487.
[4] PETUKHOVI, MALCOBNSON LJ, PRZYBYLSKIR, ARMSTRONG L. Frying performance of genetically modified canola oils. Journal of the American Oil Chemists Society, 1999,76: 627-632.
[5] MILLER MR ,BRIDLE A R,NICHOLS P D,CARTER C G . Increased elongase and desaturase gene expression with stearidonic acid enriched diet does not enhance long-chain (n-3) content of seawater Atlantic salmon (Salmo salar L.). The Journal of Nutrition , 2008,138(11):2179-2185.
[6] PIAZZA GJ , FOGLIA T A. Rapeseed oil for oleochemical uses. European Journal of Lipid Science and Technology, 2001,103: 405-454.
[7] 傅寿仲, 张洁夫 戚存扣,浦惠明,高建芹,陈新军,工业专用型高芥酸油菜新品种选育. 作物学报, 2004,30(5):409-412.
FU SZ,ZHANG J F,QI C K,PU H M,GAO J Q,CHEN X J . Breeding of high erucic acid rapeseed (B. napus L.) for industrial use.Acta Agronomica Sinica , 2004,30(5):409-412. (in Chinese)
[8] MARTINEZ-RIVAS JM ,SPERLING P,LUHS W,HEINZE.Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Molecular Breeding , 2001,8(2):159-168.
[9] PIDKOWITCH MS ,GUYEN H T, HEILMANN I, ISCHEBECK T,SHANKLIN . Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(11):4742-4747.
[10] SAHAS, ENUGUTTIB, RAJAKUMARIS ,RAJASEKHARAN R.Cytosolic triacylglycerol biosynthetic pathway in oilseeds: molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase.Plant Physiology, 2006,141: 1533-1543.
[11] BAUDS ,LEPINIEC L .Physiological and developmental regulation of seed oil production.Progress in Lipid Research , 2010,49(3):235-249.
doi: 10.1097/WNQ.0b013e3181644e82 pmid: 20102727
[12] HU XY, SULLIVAN-GILBERTM, GUPTAM ,THOMPSON S A. Mapping of the loci controlling oleic and linoleic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics, 2006,113: 497-507.
[13] PHAM AT ,SHANNON G J,BILYEU K D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theoretical and Applied Genetics , 2012,125(3):503-515.
doi: 10.1007/s00122-012-1849-z
[14] YONG HY ,WANGC, BANCROFT I,LIF, WU X, KITASHIBA H,NISHIO T. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta, 2015,242(1):313-26.
[15] FIETCHER RS, HERRMANN D,MULLEN J L, LI Q F, SCHRIDER D R, PRICE N, LIN J J, GROGAN K, KERN A,MCKAY J K. Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3 Genesgenetics, 2016,6(4):793-803.
[16] BEHLAR ,HIRANI A H,ZELMER C D,YU F Q, DILANTHA- FERNANDO W G, MCVETTY P,LI G Y .Identification of common QTL for resistance to Sclerotinia sclerotiorum in three doubled haploid populations of Brassica napus(L.). Euphytica, 2017: 213-260.
[17] HUANG JX , XIONG H X, PAN B, NI X Y, ZHANG X Y,ZHAO J Y. Mapping QTL of flowering time and their genetic relationships with seed weight in Brassica napus. Scientia Agricultura Sinica, 2016,49(16):3073-3083.
doi: 10.3864/j.issn.0578-1752.2016.16.002
[18] YEJ ,YANG Y H,CHEN B, SHI J Q, LUO M Z, ZHAN J P, WANG X F, LIU G H,WANG H Z. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics, , 2017,18(1):18-71.
[19] WENJ ,XU J F,LONG Y, WU J G, XU H M, MENG J L,SHI C H . QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. Journal of the Science of Food and Agriculture , 2016,96(2):465-473
[20] HUANG JX ,CHEN F,ZHANG H Z, NI X Y, WANG Y L, LIU H, YAO X T, XU H M, WANG H, MENG J L, ZHAO J Y. Dissection of additive,epistatic and QTL × environment effects involved in oil content variations in rapeseed.Plant Breeding,2017,136(4):728-737.
[21] RABOANATAHIRYN, CHAO HB, DALINH, PUS, YANW, YU LJ, WANG BS ,LI M T. QTL alignment for seed yield and yield related traits in Brassica napus.Frontiers in Plant Science, 2018,9: 1127.
[22] BURNS MJ ,BARNES S R,BOWMAN J G, CLARKE M H, WERNER C P,KEARSEY M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i)Seed oil content and fatty acid composition.Heredity ,2003,90(1):39-48.
[23] 张洁夫, 戚存扣 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲 ,甘蓝型油菜主要脂肪酸组成的QTL定位.作物学报, 2008,34(1):54-60.
ZHANG JF ,QI C K,PU H M, CHEN S, CHEN F, GAO J Q, CHEN X J, GU H,FU S Z .QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agronomica Sinica ,2008,34(1):54-60. (in Chinese)
[24] ZHAO JY, DIMOV Z,BECKER H C, ECKE W,MOLLERS C . Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Molecular Breeding ,2008,21(1):115-125.
doi: 10.1007/s11032-007-9113-y
[25] LIU LZ, QU CM, WITTKOPB, YIB, XIAOY, HE YJ, SNOWDON RJ ,LI J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.. PLoS ONE, 2013,8: e83052.
[26] SHEN YS ,YANGY,XU E S, GE X H, XIANG Y,LI Z Y. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theoretical and Applied Genetics ,2018,131(1):67-78.
[27] QU CM ,JIA L D,FU F Y, ZHAO H Y, LU K, WEI L J, XU X F, LIANG Y, LI S M, WANG R,LI J N . Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L . using SNP markers. BMC Genomics,2017,18(1): 232
[28] 王健康 . 数量性状基因的完备区间作图方法 . 作物学报, 2009,35(2):1-7.
WANG JK. Inclusive composite interval mapping of quantitative trait genes . Acta Agronomica,Sinica 2009,35(2):1-7. (in Chinese)
[29] RUCKERB ,ROBBELEN G. Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breed ,1996,115(4):226-230.
[30] 刘列钊, 李加纳 ,. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014,47(1):24-32.
LIU LZ LI J N. QTL Mapping of oleic acid,linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Scientia Agricultura Sinica ,2014,47(1):24-32. (in Chinese)
[31] VAN OOIJEN J W. JoinMap******4: Software for the calculation of genetic linkage maps in experimental populations. Netherlands: WagningenUniversity 2006. .
[32] KOSAMBI D D. The estimation of map distances from recombination values. Annals ofEugenics , 1944,12: 172-175.
[33] LI HH ,YE G Y, WANG J K. A modified algorithm for the improvement of composite interval mapping. Genetics , 2007,175(1):361-374.
[34] BOTELLAC, SAUTRON E,BOUDIERE L, MICHAUD M, DUBOTS E, YAMARYO-BOTTE Y, ALBRIEUX C, MARECHAL E, BLOCK M A, JOUHET J. ala10, a phospholipid flippase,controls fad2/fad3 desaturation of phosphatidylcholine in the ER and affects chloroplast lipid composition in Arabidopsis thaliana. Plant Physiology ,2016,170(3):1300-1314.
[35] QIUD ,MORGAN J,SHI J, LONG Y, LIU J, LI R, ZHUANG X, WANG Y, TAN X, DIETRICH E, WEIHMANN T, EVERETT C, VANSTRAELEN S, BECKETT P, FRASER F, TRICK M, BARNES S, WILMER J, SCHMIDT R, LI J, LI D, MENG J,BANCROFTIv. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics , 2006,114(1):67-80.
doi: 10.1007/s00122-006-0411-2
[36] 王欣娜, 阎星颖 李加纳,刘列钊,. 油菜种子油脂分子标记及QTL定位的研究进展. 中国农学通报, 2012,28(24):1-7.
WANG XN ,YAN X Y, LI J N,LIU L Z. The research progress of lipid molecular markers and QTL mapping in rapeseed. Chinese Agricultural Science Bulletin ,2012,28(24):1-7. (in Chinese)
[37] 张宏军, 肖钢, 谭太龙, 李栒, 官春云, . EMS处理甘蓝型油菜(Brassica napus)获得高油酸材料. 中国农业科学, 2008,41(12):4016-4022.
ZHANG HJ, XIAO G,TAN T L, LI X,GUAN C Y. High oleate material of rapeseed (Brassica napus) produced by EMS treatment. Scientia Agricultura Sinica ,2008,41(12):4016-4022. (in Chinese)
[38] 陈伟, 范楚川 钦洁, 郭振华, 傅廷栋, 周永明. 分子标记辅助选择改良甘蓝型油菜种子油酸和亚麻酸含量. 分子植物育种, 2011,9(2):190-197.
CHEN W , FAN C C,QIN J, GUO Z H, FU T D,ZHOU Y M . Genetic improvement of oleic and linolenic acid content through marker- assisted selection in Brassica napus seeds. Molecular Plant Breeding , 2011,9(2):190-197. (in Chinese)
[39] OKULEYJ ,LIGHTNERJ,FELDMANN K, YADAV N, LARK E, BROWSE J .Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. The Plant Cell , 1994,6(1):147-58.
[40] LIF , CHEN B,XU K, WU J, SONG W, BANCROFT I, HARPER A L, TRICK M, LIU S,GAO G. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research , 2014,21(4):355-367.
[41] WUG , WU Y,XIAO L, LI X, LUC . Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theoretical and Applied Genetics ,2008,116(4):491-499.
doi: 10.1007/s00122-007-0685-z
[42] WANGN ,WANG YJ,TIAN F, KING G J, ZHANG C Y, LONG Y, SHI L,MENG J L. A functional genomics resource for Brassica napus: Development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING.New Phytologist , 2008,180(4):751-765.
[43] TRESCHS, HEILMANNM, CHRISTIANSENN, LOOSERR, GROSSMANNK. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide andperfluidone,selective inhibitors of 3-ketoacyl-CoA synthases.Phytochemistry, 2012,76 162-171.
[44] ROWLANDO,ZHENG H,HEPWORTH S R, LAM P, JETTER R,KUNST L. FAR3 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wS production in Arabidopsis. Plant Physiology , 2006,142(3):866-877.
[45] NIKOLAU BJ , OHLROGGE J B, WURTELE E S . Plant biotin- containing carboxylases. Archives of Biochemistry and Biophysics ,2003,414(2):211-222.
[46] ZHAO LF ,KATAVIC V,LI F L, HAUGHN G W, KUNST L . Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1),but not LACS8,functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. The Plant Journal, 2010,64(6):1048-1058.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[5] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[8] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[9] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[14] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[15] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!