Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3471-3484.doi: 10.3864/j.issn.0578-1752.2019.19.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Construction of Co-expression Network of lncRNA and mRNA Related to Hair Follicle Development of Subo Merino Sheep

CHEN HuaFeng1,2,TIAN KeChuan2(),HUANG XiXia1(),Ablat Sulayman1,HE JunMin3,TIAN YueZhen2,XU XinMing2,FU XueFeng2,ZHAO BingRu4,ZHU Hua1,Hanikezi Tulafu2   

  1. 1 College of Animal Science, Xinjiang Agricultural University, Urumqi 830052
    2 Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011
    3 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
    4 College of Animal Science and Technology, China Agricultural University, Beijing 100083
  • Received:2018-12-19 Accepted:2019-07-03 Online:2019-10-01 Published:2019-10-11
  • Contact: KeChuan TIAN,XiXia HUANG E-mail:tiankechuan@163.com;au-huangxixia@163.com

Abstract:

【Objective】 With the development and improvement of high-throughput sequencing technology, massive transcriptome sequencing data has emerged, and more and more methods of gene network have been used in research; the hair follicles development of fine wool sheep is regulated by multiple genes and lncRNAs. It is not enough to study a certain molecule alone to discover its regulatory mechanism. The aim of this study was to construct a co-expression network of lncRNAs and mRNAs related to hair follicle development, and to explore potential candidate genes for hair follicle development. 【Method】 The study was performed on fetal skin tissues of the 65th, 85th, 105th, and 135th days and lambs skin tissues of the 7th and 30th days from Subo Merino sheep, with 3 biological replicates in each period, a total of 18 samples were sequenced by transcriptome to obtain lncRNAs and mRNAs expression profiles of 6 different developmental stages, and the differential expressed lncRNAs and mRNAs in adjacent periods was screened to construct a co-expression module by Weighted Gene Co-expression Network Analysis (WGCNA) method, and GO (Gene Ontology) and KEGG pathway enrichment analysis of DAVID online tool was used to find hair follicle related modules. Finally, the high-interconnect lncRNAs and mRNAs were screened from the target module for network visualization using Cytoscape software.【Result】 From the expression profile data, 9070 differentially expressed lncRNAs and mRNAs were screened, and 11 modules were obtained by WGCNA method. The DAVID enrichment analysis revealed that the genes in the honeydew1 module, paleturquoise module, and skyblue2 module were involved in biological processes such as skin development, hair follicle development, hair follicle morphogenesis, negative regulation of Wnt signaling pathway, and cell adhesion, et al; and the signaling pathways involved in hair follicle development such as Wnt signaling pathway, TGF-β signaling pathway, Hedgehog signaling pathway, tight junction, MAPK signaling pathway, ECM-receptor interaction, et al. The sub-networks of lncRNAs and mRNAs with high connectivity were screened in these 3 modules, and the hair follicle development related genes including TGFB2, CTSB, SFN, SPINT1, FAM83G, GSDMA, MPZL3, VIM and CRABP1 were obtained, and possible target genes of 24 lncRNAs including ENSOART00000029117, TCONS_00489976, TCONS_00376759 were predicted.【Conclusion】 In this study, we first constructed a co-expression network of lncRNAs and mRNAs related to the hair follicles development of Subo merino sheep using WGCNA method, identified 3 co-expression modules related to hair follicle development, and found several potential candidate genes related to hair follicle development, and predicted possible target genes of 24 lncRNAs.

Key words: Subo Merino sheep, WGCNA, mRNA, lncRNA, hair follicle development

Table 1

Statistics of differential expression of lncRNAs and mRNAs"

D85
vs.
D65
D105
vs.
D85
D135
vs.
D105
A7
vs.
D135
A30
vs.
A7
去重复
Deduplication
差异表达lncRNA数 No. DE lncRNAs 35 55 46 43 25 140
差异表达已知mRNA数 No. DE known mRNAs 1562 2302 1520 699 166 4372
差异表达novel mRNA数 No. DE novel mRNAs 1762 2066 611 842 28 4558

Fig. 1

Screening of soft thresholds"

Fig. 2

Gene clustering tree and module construction"

Table 2

Number of genes and lncRNAs in co-expressing network module"

mRNA 新mRNA Novel mRNA lncRNA 总计 Total
bisque4 55 8 2 65
brown4 66 2 0 68
cyan 309 120 6 435
darkolivegreen 24 217 1 242
darkorange 206 1402 13 1621
greenyellow 380 151 6 537
grey 224 206 33 463
honeydew1 665 1188 14 1867
paleturquoise 1483 265 38 1786
skyblue2 890 980 23 1893
steelblue 70 19 4 93

Fig. 3

GO enrichment bubble diagram of target module"

Table 3

Part GO enrichment results of the target modules"

模块
Module
ID GO条目
GO Term
基因数
No. genes
P
P value
基因
Genes
honeydew1 GO:0090090 经典Wnt信号通路负调控
Negative regulation of canonical Wnt signaling pathway
12 4.26E-06 WNT5A, CTHRC1, SOX10, NOG, SOST, SFRP2, DRAXIN, SOX2, LIMD1, LRP4, MLLT3, GLI1
GO:0043588 皮肤发育 Skin development 6 5.74E-04 FRAS1, TFAP2B, PTCH2, LTB, COL5A2, COL5A1
GO:0050680 上皮细胞增殖负调控
Negative regulation of epithelial cell proliferation
6 3.77E-03 WNT5A, HPN, SFRP2, SOX2, PTCH1, TGFB2
GO:0001942 毛囊发育 Hair follicle development 5 7.28E-03 INHBA, EDAR, ALX4, LRP4, TGFB2
GO:0030514 BMP信号通路负调控
Negative regulation of BMP signaling pathway
5 1.28E-02 WNT5A, NOG, SOST, BMPER, SFRP2
GO:0007155 细胞粘附
Cell adhesion
8 2.24E-02 LAMA1, HES5, TLN2, ITGA11, CNTN2, CNTN4, THBS2, COL5A1
paleturquoise GO:0043588 皮肤发育
Skin development
6 2.68E-02 KRT9, COL3A1, ITGB4, ADAMTS2, ASPRV1, DHCR24
GO:0031069 毛囊形态发生 Hair follicle morphogenesis 5 1.89E-02 KRT25, KRT27, FOXE1, KRT71, TMEM79
GO:0007173 表皮生长因子受体信号通路
Epidermal growth factor receptor signaling pathway
6 1.62E-02 FAM83B, EREG, HBEGF, TGFA, AREG, SOX9
GO:0001942 毛囊发育
Hair follicle development
6 4.11E-02 DSG4, ZDHHC21, FOXN1, SOX9, DNASE1L2, LGR5
skyblue2 GO:0090090 经典Wnt信号通路负调控
Negative regulation of canonical Wnt signaling pathway
9 1.49E-02 WNT4, NOTCH1, WNT5B, SFRP4, FZD1, FOXO1, ISL1, FRZB, PTPRO
GO:0007155 细胞粘附
Cell adhesion
16 4.20E-05 CTNNAL1, HAPLN1, TNC, COL15A1, ITGA3, POSTN, STAB2, GRHL2, TNFAIP6, ITGA9, LYVE1, TGFBI, VCAN, CNTN3, NCAN, SPP1

Fig. 4

KEGG enriched bubble diagram of target module"

Table 4

Part KEGG enrichment results of the target modules"

模块
Module
ID KEGG条目
KEGG Term
基因数
No. genes
P
P value
基因
Genes
honeydew1 oas04512 ECM-受体相互作用
ECM-receptor interaction
6 2.30E-02 LAMA1, ITGA11, COL2A1, THBS2, COL5A2, COL5A1
oas04510 粘着力
Focal adhesion
11 4.72E-03 LAMA1, TLN2, PGF, ITGA11, PIK3R5, COL2A1, HGF, PIK3R3, THBS2, COL5A2, COL5A1
oas04340 Hedgehog信号通路
Hedgehog signaling pathway
5 1.11E-03 PTCH1, PTCH2, HHIP, GLI2, GLI1
paleturquoise oas04530 紧密连接
Tight junction
14 1.63E-02 CLDN8, PPP2R1B, PARD6B, CLDN4, MYL10, CLDN10, CLDN14, LLGL2, EPB41L3, IGSF5, CLDN1, MYH14, TJP3, MYH7B
oas04010 MAPK信号通路
MAPK signaling pathway
24 4.05E-03 IL1R2, FGF5, MAPKAPK3, TGFB3, NR4A1, FGF22, FGF21, FGF12, FLNC, CACNA2D3, DUSP4, MAP3K6, FOS, MAP3K5, DUSP2, HSPA2, DUSP1, MAPK13, RPS6KA2, HSPB1, GADD45B, PLA2G4E, CD14, NGF
skyblue2 oas04512 ECM-受体相互作用
ECM-receptor interaction
18 6.93E-10 COL4A4, COL4A3, TNC, ITGA3, COL5A3, ITGA9, LAMB3, COL6A6, LAMC3, LAMA5, COL6A5, ITGB6, RELN, SV2A, THBS1, COL24A1, SPP1, FN1
oas04310 Wnt信号通路
Wnt signaling pathway
9 4.50E-02 WNT2, WNT10A, WNT4, WNT5B, DKK1, SFRP4, MMP7, FZD1, WIF1

Table 5

Top 5 mRNA and lncRNA sorted by degree"

honeydew1 paleturquoise skyblue2
基因名Gene name 度Degree 基因名Gene name 度Degree 基因名Gene name 度Degree
mRNA XLOC_170356 876 TEC 1462 XLOC_001041 915
ANGPT1 861 GRHL1 1455 CDH11 909
XLOC_074918 854 GSDMA 1451 POSTN 880
XLOC_024093 833 CLDN4 1448 ENSOARG00000012813 842
XLOC_106735 831 GABRP 1444 TNFAIP6 830
lncRNA ENSOART00000029117 391 TCONS_00489976 1079 TCONS_00041508 481
TCONS_00236664 104 TCONS_00346829 1074 TCONS_00008348 450
TCONS_00041597 61 TCONS_00039510 958 TCONS_00352973 362
TCONS_00453233 39 TCONS_00570568 876 TCONS_00497279 323
TCONS_00351448 34 ENSOART00000027499 813 TCONS_00127951 225

Fig. 5

The co-expression network of differentially expressed genes and lncRNAs in honeydew1 module The size of the dot represents the level of connectivity"

Fig. 6

The co-expression network of differentially expressed genes and lncRNAs in paleturquoise module The size of the dot represents the level of connectivity"

Fig. 7

The co-expression network of differentially expressed genes and lncRNAs in skyblue2 module The size of the dot represents the level of connectivity"

[1] 汪涛, 蒋庆华, 彭佳杰, 王亚东 . 基因共表达网络的构建及分析方法研究综述. 智能计算机与应用, 2014,4(6):47-50.
WANG T, JIANG Q H, PENG J J, WANG Y D . A review of the construction and analysis of gene co-expression network. Intelligent Computer and Applications, 2014,4(6):47-50.(in Chinese)
[2] ZHANG L C, SUN F L, JIN H G, DALRYMPLE B P, CAO Y, WEI T, VUOCOLO T, ZHANG M X, PIAO Q L, INGHAM A B . A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Scientific Reports, 2017,7(1):14301-14312.
[3] 柳楠, 田可川, 石国庆, 贺建宁, 刘积凤, 狄江, 杨永林 . 苏博美利奴羊核心群级进杂交不同世代对产毛性状影响的研究. 中国畜牧杂志, 2015,51(15):6-10.
LIU N, TIAN K C, SHI G Q, HE J N, LIU J F, DI J, YANG Y L . Effect of different generations on wool traits during upgrading cross stages in subo merino nuleus herd. Chinese Journal of Animal Science, 2015,51(15):6-10.(in Chinese)
[4] 张立春, 尹峰, 柳俭强, 李梦姝, 王春昕, 曹阳, 朴庆林, 金海国, 张明新 . 绵羊FGF5基因Exon 3多态性对毛用性状的影响. 中国草食动物科学, 2018,38(06):1-5.
ZHANG L C, YIN F, LIU J Q, LI M S, WANG C X, CAO Y, PIAO Q L, JIN H G, ZHANG M X . Relationship between polymorphisms of FGF5 gene Exon 3 and wool traits. China Herbivore Science, 2018,38(06):1-5.(in Chinese)
[5] 付雪峰, 黄锡霞, 刘春洁, 徐新明, 张艳花, 吴伟伟, 于丽娟, 石刚, 田可川 . 不同羊毛纤维直径细毛羊MYL6基因克隆及差异表达研究. 中国畜牧杂志, 2016,52(13):5-11.
FU X F, HUANG X X, LIU C J, XU X M, ZHANG Y H, WU W W, YU L J, SHI G, TIAN K C . Study on clone and differential expression of MYL6 gene in fine-wool sheep with different fiber diameter. Chinese Journal of Animal Science, 2016,52(13):5-11.(in Chinese)
[6] 朱桦, 潘家华, 徐新明, 付雪峰, 田月珍, 阿布来提·苏来曼, 黄锡霞, 田可川 . Dsg4基因在苏博美利奴羊毛囊发育不同时期及不同组织中的表达差异. 中国畜牧杂志, 2018,54(10):47-51.
ZHU H, PAN J H, XU X M, FU X F, TIAN Y Z, ABLAT S, HUANG X X, CHUANTIAN K . Differential expression of Dsg4 gene in different stages of hair follicles development and different tissues in Subo Merino sheep. Chinese Journal of Animal Science, 2018,54(10):47-51.(in Chinese)
[7] ZHANG B, HORVATH S . A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 2005,4(1):1-37.
[8] LANGFELDER P, HORVATH S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9(1):559-571.
[9] 阿布来提·苏来曼, 田月珍, 许琴, 何军敏, 赵冰茹, 徐新明, 付雪峰, 热娜古丽·艾尼瓦尔江, 黄锡霞, 田可川 . 苏博美利奴羊胎儿皮肤毛囊结构及形态发育. 中国农业科学, 2017,50(16):3226-3235.
doi: 10.3864/j.issn.0578-1752.2017.16.017
ABLAT S, TIAN Y Z, XU Q, HE J M, ZHAO B R, XU X M, FU X F, RANAGUL A, HUANG X X, TIAN K C . Study on fetal skin hair follicle structure and morphological development of Subo Merino sheep. Scientia Agricultura Sinica, 2017,50(16):3226-3235.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.017
[10] MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7):621-628.
[11] ROBINSON M D, MCCARTHY D J, SMYTH G K . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
[12] HUANG D W, SHERMAN B T, LEMPICKI R A . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009,4(1):44-57.
[13] 哈德利·威克姆 . ggplot2:数据分析与图形艺术. 西安: 西安交通大学出版社, 2013.
HADLEY W. ggplot2. Elegant Graphics for Data Analysis. Xi'an: Xi'an Jiaotong University Press, 2013.( in Chinese)
[14] CHEN Y C, GUO Y F, HE H, LIN X, WANG X F, ZHOU R, LI W T, PAN D Y, SHEN J, DENG H W . Integrative analysis of genomics and transcriptome data to identify potential functional genes of BMDs in females. Journal of Bone and Mineral Research, 2016,31(5):1041-1049.
[15] SHANNON P, MARKIEL A, OZIER O, BALIGA N S, WANG J T, RAMAGE D, AMIN N, SCHWIKOWSKI B, IDEKER T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 2003,13(11):2498-2504.
[16] 魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48(11):2205-2215.
WEI K, ZHANG T T, MA L . Construction and functional analysis of gene co-expression network modules. Acta Veterinaria et Zootechnica Sinica, 2017,48(11):2205-2215.(in Chinese)
[17] MIAO X Y, LUO Q M, ZHAO H J, QIN X Y . Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Scientific Reports, 2016, 6(1):39398-39407.
[18] XU L Y, ZHAO F P, REN H X, LI L, LU J, LIU J S, ZHANG S F, LIU G E, SONG J Z, ZHANG L, WEI C H, DU L X . Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages. International Journal of Biological Sciences, 2014,10(9):1039-1050.
[19] PACHOLEWSKA A, MARTI E, LEEB T, JAGANNATHAN V, GERBER V . LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells. BMC Genomics, 2017,18(1):34-45.
[20] OSHIMORI N, FUCHS E . Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Stem Cell, 2012,10(1):63-75.
[21] OORTVELD M A W, VAN VLIJMEN WILLEMS I M J J, KERSTEN F F J, CHENG T, VERDOES M, VAN ERP P E J, VERBEEK S, REINHECKEL T, HENDRIKS W J A J, SCHALKWIJK J, ZEEUWEN P L J M . Cathepsin B as a potential cystatin M/E target in the mouse hair follicle. Faseb Journal, 2017,31(10):4286-4294.
[22] HAMMOND N L, HEADON D J, DIXON M J . The cell cycle regulator protein 14-3-3sigma is essential for hair follicle integrity and epidermal homeostasis. Journal of Investigative Dermatology, 2012, 132(6):1543-1553.
[23] 卜然, 李晶, 刘开东, 刘积凤, 柳楠 . 细毛羊肩颈部与腹部皮肤组织SFN基因差异表达的研究. 黑龙江畜牧兽医, 2014(19):80-82.
BU R, LI J, LIU K D, LIU J F, LIU N . Study on the differential expression of the SFN gene in the skin tissues of the shoulder /neck and abdomen in fine-wool sheep. Heilongjiang Animal Science and Veterinary Medicine, 2014(19):80-82.(in Chinese)
[24] NAGAIKE K, KAWAGUCHI M, TAKEDA N, FUKUSHIMA T, SAWAGUCHI A, KOHAMA K, SETOYAMA M, KATAOKA H . Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis- like condition and abnormal hair development in mice. American Journal of Pathology, 2008,173(5):1464-1475.
[25] BALMER P, FELLAY A K, SAYAR B S, HARITON W V J, WIENER D J, GALICHET A, MULLER E J, ROOSJE P J . FAM83G/ Fam83g genetic variants affect canine and murine hair formation. Experimental Dermatology, 2018,28(4):13729-13738.
[26] 任亮 . 藏系绵羊GSDMA基因皮肤特异表达载体的构建[D]. 成都: 西南民族大学, 2015.
REN L . Construction of skin-specific expression vector for GSDMA gene of Tibetan sheep[D]. Chengdu: Southwest Minzu University, 2015.( in Chinese)
[27] 杨雪 . 牦牛皮肤毛囊周期性结构变化规律及其相关调控因子的研究[D]. 兰州: 甘肃农业大学, 2017.
YANG X . Study on histological characteristics of hair follicle and expression pattern of related factors in the skin during hair cycle in yak[D]. Lanzhou: Gansu Agricultural University, 2017.( in Chinese)
[28] LEI M X, XIANG G, LI Y, TIAN Y, LIAN X H . Gsdma3 gene is needed for the induction of apoptosis-driven catagen during mouse hair follicle cycle. Histochemistry & Cell Biology, 2011,136(3):335-343.
[29] LEIVA A G, CHEN A L, DEVARAJAN P, CHEN Z, DAMANPOUR S, HALL J A, BIANCO A C, LI J, BADIAVAS E V, ZAIAS J, MITEVA M, ROMANELLI P, NOURI K, CAO WIKRAMANAYAKE T . Loss of Mpzl3 function causes various skin abnormalities and greatly reduced adipose depots. Journal of Investigative Dermatology, 2014, 134(7):1817-1827.
[30] RILE N, LIU Z H, GAO L X, QI J K, ZHAO M, XIE Y C, SU R, ZHANG Y J, WANG R J, LI J, XIAO H M, LI J Q . Expression of vimentin in hair follicle growth cycle of inner Mongolian cashmere goats. BMC Genomics, 2018,19(1):38-45.
[31] COLLINS C A, WATT F M . Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Developmental Biology, 2008,324(1):55-67.
[32] YAN P X, LUO S, LU J Y Y, SHEN X H . Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics & Development, 2017,46:170-178.
[1] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[2] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[3] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[4] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[5] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[6] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[7] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[8] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[9] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[10] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[11] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[12] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[13] HUANG SaiNan,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SUN Wei. Changes of LncRNA Expression Profile in Spleen of Diarrhea and Non-diarrhea Individuals in F17 of Hu Sheep Lamb [J]. Scientia Agricultura Sinica, 2019, 52(7): 1282-1294.
[14] ZOU ShuangXia,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SHI DongFang,SUN Wei. Differential circRNA Analysis in the Spleen of Hu-sheep Lambs Infected with F17 Escherichia coli [J]. Scientia Agricultura Sinica, 2019, 52(6): 1090-1101.
[15] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!