Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1282-1294.doi: 10.3864/j.issn.0578-1752.2019.07.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Changes of LncRNA Expression Profile in Spleen of Diarrhea and Non-diarrhea Individuals in F17 of Hu Sheep Lamb

HUANG SaiNan1,JIN ChengYan1,BAO JianJun2,WANG Yue1,CHEN WeiHao1,WU TianYi1,WANG LiHong1,LÜ XiaoYang1,GAO Wen1,WANG BuZhong3,ZHU GuoQiang4,DAI GuoJun1,SUN Wei1,5()   

  1. 1 College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu
    2 Nanjing New Kyushu Agriculture and Animal Husbandry Technology Co., Ltd., Nanjing 210000
    3 Jiangsu Source Ecological Agriculture Co., Ltd., Taizhou 225300, Jiangsu
    4 College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu
    5 Joint Laboratory of International Cooperation in Agriculture and Agricultural Products Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2018-09-18 Accepted:2018-12-03 Online:2019-04-01 Published:2019-04-04
  • Contact: Wei SUN E-mail:dkxmsunwei@163.com

Abstract:

【Objective】The objective of this study was to investigate the effect of lncRNA on anti-diarrhea in sheep by screening lncRNA differentially expressed in E. coli F17 fimbriae non-diarrhea and diarrhea sheep spleen. 【Method】 In this study, individuals with non-diarrhea and diarrhea were obtained by oral administration of E. coli F17 strain to Lake Lamb. The success of the challenge was verified by using intestinal counts and pathological sections of the lambs. A cDNA library of spleen from lambs in non-diarrhea group and diarrhea group was constructed and sequenced by using Illumina HiSeq 2500 platform. Functional description and cell pathway analysis of differentially expressed transcripts were performed by Gene Ontology (GO) and KEGG Pathway enrichment analysis by using FPKM method. The expression levels of lncRNA and mRNA transcripts were screened by high-throughput sequencing technology RNA-seq for differential expression of lncRNA in spleens of non-diarrhea and diarrhea individuals; then, Quantitative PCR was used to detect spleen tissues in non-diarrhea and diarrhea lambs. The expression levels of differentially expressed (DE) lncRNA and DE mRNA were used to verify the role of screened DE lncRNA in the non-diarrhea group. 【Result】 After oral administration of E. coli F17 strain, there were two phenotypes of non-diarrhea and diarrhea. The number of bacteria in the intestine of the diarrhea group was significantly higher than that in the non-diarrhea group (P<0.05), and the jejunal mucosa of the diarrhea group appeared different degrees of damage, dull color, part of the small intestine villi off. We used RNA-seq to screen 34 DE lncRNAs and 703 DE mRNAs in non-diarrhea and diarrhea lamb spleens. A total of 12 DE lncRNA and DE mRNA were randomly selected and verified by q-PCR. Relative expression levels in the diarrhea and non-diarrhea lambs were found to be consistent with RNA-seq results. The comparison between DE lncRNA and GO database by GO and KEGG pathway enrichment analysis indicated that a total of 34 lncRNAs were annotated and classified into 302 functional subclasses. There were more than one functional subclass of lncRNA, such as sheep protein binding (GO: 0005515), nuclear (GO: 0005634), poly (A) RNA binding (GO: 0044822), cytoplasm (GO: 0005737), tissue remodeling (GO: 0048771), regulation of endopeptidase activity (GO: 0052548) ), 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase complex (GO: 0043540), phosphatidylinositol phosphorylation (GO: 0848654), fructose-2, 6.2-phosphite 2-phosphatase activity (GO: 0004331) and calcium-dependent phospholipase C activity (GO: 0050429), while the remaining functional subclasses had less lncRNA distribution. The alignment of DE lncRNA with the KEGG pathway database indicated that a total of 34 lncRNAs were annotated and classified into 149 KEGG pathways, the sheep thyroid hormone signaling pathway (path: ko04919), Spliceosome (path: ko03040), white blood cell cross Endothelial migration (path: ko04670), neurotrophin signaling pathway (path: ko04722), lysosome (path: ko04142), MAPK signaling pathway-pathway (path: ko04011), sphingolipid signaling pathway (path: ko04071), phagocytosis the body (path: ko04145), oxidative phosphorylation (path: ko00190) and other 9 KEGG pathways had more lncRNAs, while the remaining KEGG pathways had less lncRNA distribution. Through lncRNA-mRNA interaction network analysis, we found six co-expressed genes: MYO1G, TIMM29, CARM1, ADGRB1, SEPT4, and DESI2. 【Conclusion】 This study explored the expression profile of lncRNA in the spleen of non-diarrhea and diarrhea lambs for diarrhea. It was found that lncRNA differentially expressed in the spleen of non-diarrhea and diarrhea lambs, which helped to find out how lambs resist diarrhea and provided a scientific basis for lambs to resist diarrhea.

Key words: E. coli F17, lncRNA, Lake lamb

Table 1

Ingredients of milk powder (per 100 g milk powder)"

成分
Ingredient
水分
Moisture
粗蛋白
Crude protein
粗脂肪
Crude fat
粗纤维
Crude fiber
粗灰分
Coarse ash

Calcium
总磷
Total phosphorus
赖氨酸
Lysine
比例
Proportion
≤6 ≥22 ≥18 ≤5 ≤8 0.9-3.0 ≥0.5 ≥1.0

Table 2

Bristol stool form scale[20]"

形态 Form 描述 Describe
第1种形态 Type 1 分散的干球便,如坚果,很难排出 Separate hard lumps, like nuts
第2种形态Type 2 香肠状,多块的 Sausage-shaped but lumpy
第3种形态 Type 3 腊肠样,但表面有裂缝Like a sausage or snake but with cracks on its surface
第4种形态Type 4 腊肠状或蛇状,表面光滑 Like a sausage or snake, smooth and soft
第5种形态Type 5 柔软成块,边缘清楚,容易排出Soft blobs with clear-cut edges
第6种形态Type 6 软片状,边缘毛糙或是糊状便 Fluffy pieces with ragged edges, a mushy stool
第7种形态 Type 7 水样便,无团状成分 Watery, no solid pieces

Table 3

The primer of GAPDH, DE lncRNAs and mRNAs"

基因符号Gene symbol 引物序列Primer sequence 产物长度Product length (bp)
10个DE mRNA的引物Primers of ten DE mRNA XM_015103189.1 F:AGCACTTCCTCCTGTCCG 132
R:CAGCACAGAAGGCAAAGTC
XM_012106626.2 F:CCGAGTTTGCAGGTACCCAAC 121
R:TTTTGGCGCATGTATACCTG
XM_012095567.2 F:TGAGACTCTACTTCGCTGC 102
R:TTGCCCATCCTTAATAGCTG
XM_012181407.2 F:ACGACGGTGGTTAAATACTC 125
R:AGTTGCCCATAGTCACTGGTC
XM_012181919.2 F:TCAACCATATGCTGACGGAC 119
R:ATGCCGCCTATCAAGGTC
XM_012152506.2 F:CCACCTGCGGTTCAAGTTAC 157
R:TGCCTGAATCACCTTGTC
10个DE lncRNA的引物
Primers of ten DE lncRNA
TCONS_00053949 F:CCTGGCTATATCCTTACATCAC 100
R:AAGTTCAAACTCCGCTGCAC
TCONS_00059692 F:AATTTCTTCTCGTTCCAAGGC 131
R:CCAACAGGGAGCCAACTTC
TCONS_00089751 F:AGAAGGCTTTGACCGAAC 153
R:TCAATGCCCTCCACGAGAC
TCONS_00099925 F:AGTGCCACATGTACCTAGCAG 146
R:ACGACAGGCATTTTAACCCATG
TCONS_00107469 F:TAGTACAGCCCATATTTATCG 115
R:ATTTTCTTTCCACAGGGACG
TCONS_00099739 F:CCGACGCTGTCATGATGC 159
R:TCCGTCTCCAGAACCAAGGC
GAPDH的引物
Primers of GAPDH
GAPDH-F F:GTTCCACGGCACAGTCAAGG 127
R:ACTCAGCACCAGCATCACCC

Fig. 1

Comparison of intestinal bacteria count between non-diarrhea group and diarrhea lamb"

Table 4

Comparison of intestinal bacteria count between non-diarrhea group and diarrhea lamb"

组别
Group
肠道
Intestinal tract
稀释倍数 Dilution multiple 细菌数量
Count of bacterial (CFU/mL)
105 106 107 108
非腹泻组
Non-diarrhea group
十二指肠 Duodenum 70 6 NG NG 6.0×106
空肠 Jejunum 51 NG NG NG 5.1×106
回肠 Ileum >500 170 9 NG 9.0×107
腹泻组
Diarrhea group
十二指肠 Duodenum >1000 >500 128 13 1.3×109
空肠 Jejunum >1000 272 47 NG 4.7×108
回肠 Ileum >1000 >500 176 19 1.9×109

Fig. 2

Histological observation of jejunum in lambs of non-diarrhea group and diarrhea group"

Fig. 3

lncRNA length, type, predicting the number of exons in lncRNA"

Fig. 4

LncRNA (left ) and mRNA (right) transcript expression level box plot"

Fig. 5

Differentially expressed lncRNAs (left ) and mRNAs (right) between non-diarrhea and diarrhea lambs"

Fig. 6

Relative expression levels of DE lncRNA and mRNA in non-diarrhea and diarrhea lambs"

Fig. 7

Gene Ontology and KEGG pathway enrichment analysis of DE lncRNAs"

Table 5

cis control results of differential lncRNAs"

lncRNA 表达趋势
Regulation
mRNA 基因
Gene
表达趋势
Regulation
染色体编号
Chrom
Pearson P
P value
Pearson 相关系数Correlation 顺距
cis distance
TCONS_00053949 Down XM_012176963.2 MYO1G Up NC_019461.2 0.034 -0.845 1670
TCONS_00059692 Up XM_015095635.1 TIMM29 Down NC_019462.2 0.01 -0.916 16037
TCONS_00059692 Up XM_015095835.1 CARM1 Down NC_019462.2 0.033 -0.848 22513
TCONS_00089751 Up XM_015097644.1 ADGRB1 Up NC_019466.2 0.0027 0.957 8560
TCONS_00099925 Down XM_015098457.1 SEPT4 Up NC_019468.2 0.049 -0.812 98788
TCONS_00107469 Up XM_012187185.1 DESI2 Up NC_019469.2 0.0026 0.958 94714
[1] ORSKOV I, ORSKOV F . Episome-carried surface antigen K88 of Escherichia coli. I. Transmission of the determinant of the K88 antigen and influence on the transfer of chromosomal markers. Journal of Bacteriology, 1966,91(1):69-75.
doi: 10.1385/0-89603-480-1:425 pmid: 315911
[2] STIRM S, ORSKOV I, ORSKOV F . K88, an episome-determined protein antigen of Escherichia coli. Nature, 1966,209(5022):507-508.
[3] KIM T, JEON Y J, CUI R, LEE J H, PENG Y, KIM S H, TILI E, ALDER H, CROCE C M . Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. Journal of National Cancer Institute, 2015,107(4). doi: 10.1093/jnci/dju505.
doi: 10.1093/jnci/dju505 pmid: 4402359
[4] OUYANG J, ZHU X M, CHEN Y H, WEI H T, CHEN Q H, CHI X J, QI B M, ZHANG L F, ZHAO Y, GAO F, WANG G S, CHEN J L . NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe, 2014,16(5):616-626.
doi: 10.1016/j.chom.2014.10.001 pmid: 25525793
[5] LI Z, RANA T M . Decoding the noncoding: prospective of lncRNA-mediated innate immune regulation. RNA Biology, 2014,11(8):979-985.
doi: 10.4161/rna.29937 pmid: 4615744
[6] TURNER M, GALLOWAY A, VIGORITO E . Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nature Immunology, 2014,15(6):484-491.
doi: 10.1038/ni.2887 pmid: 24840979
[7] HEWARD J A, LINDSAY M A . Long non-coding RNAs in the regulation of the immune response. Trends Immunology, 2014,35(9):408-419.
doi: 10.1016/j.it.2014.07.005 pmid: 25113636
[8] REN C, DENG M, FAN Y, YANG H, ZHANG G, FENG X, LI F, WANG D, WANG F, ZHANG Y . Genome-wide analysis reveals extensive changes in LncRNAs during skeletal muscle development in Hu Sheep. Genes, 2017,8(8):283-313.
doi: 10.3390/genes8100283 pmid: 5664133
[9] ZHANG Y, YANG H, HAN L, LI F, ZHANG T, PANG J, FENG X, REN C, MAO S, WANG F . Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation. Scientific Reports, 2017,7(1):5180.
doi: 10.1038/s41598-017-05443-5 pmid: 5507887
[10] YUE Y, GUO T, YUAN C, LIU J, GUO J, FENG R, NIU C, SUN X, YANG B . Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep (Ovis aries) skin during initiation of secondary hair follicle . PLoS ONE. 2016, 11(6): e: 0156890.
doi: 10.1371/journal.pone.0156890 pmid: 27276011
[11] 徐兴文 . 羊大肠杆菌病防治. 中国畜禽种业, 2017,13(4):112-113.
doi: 10.3969/j.issn.1673-4556.2017.04.109
XU X W . Prevention and treatment of sheep colibacillosis. The Chinese Livestock and Poultry Breeding, 2017,13(4):112-113. (in Chinese)
doi: 10.3969/j.issn.1673-4556.2017.04.109
[12] 张文静 . 羊大肠杆菌病的防控措施. 畜牧兽医科技信息, 2017(6):76.
doi: 10.3969/J.ISSN.1671-6027.2017.06.071
ZHANG W J . Prevention and control measures for sheep colibacillosis. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2017(6):76. (in Chinese)
doi: 10.3969/J.ISSN.1671-6027.2017.06.071
[13] KONG L, ZHANG Y, YE ZQ, LIU XQ, ZHAO SQ, WEI L, GAO G . CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 2007,36:345-349.
doi: 10.1093/nar/gkm391 pmid: 17631615
[14] SUN L, LUO H T, BU D C, ZHAO G G, YU K T, ZHANG C H, LIU Y N, CHEN R S, ZHAO Y . Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 2013 , 41(17) : 166.
doi: 10.1093/nar/gkt646 pmid: 3783192123979317936517431704729
[15] FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L, TATE J, PUNTA M . The Pfam protein families database. Nucleic Acids Research, 2014,42(Database issue):222-230.
doi: 10.1093/nar/gkt1223 pmid: 3965110
[16] LI A, ZHANG J, ZHOU Z . PLEK: A tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. Bmc Bioinformatics, 2014,15(1):311.
doi: 10.1186/1471-2105-15-311 pmid: 4177586
[17] TRAPNELL C, WILLIAMS B A, PERTEA G, MORTAZAVI A, KWAN G, VAN BAREN M J, SALZBERG S L, WOLD B J, PACHTER L . Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010,28(5):511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[18] ANDERS S, HUBER W . Differential expression analysis for sequence count data. Biology, 2010,11:R106.
doi: 10.1186/gb-2010-11-10-r106 pmid: 3218662
[19] KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSU T, YAMANISHI Y . KEGG for linking genomes to life and the environment. Nucleic Acids Research. 2008,36:480-484.
doi: 10.1093/nar/gkm882 pmid: 18077471
[20] LEWIS S J, HEATON K W . Stool form scale as a useful guide to intestinal transit time. Scandinavian Journal of Gastroenterology, 1997,32(9):920-924.
doi: 10.3109/00365529709011203
[21] VENEZIANO D, NIGITA G, FERRO A . Computational approaches for the analysis of ncRNA through deep sequencing Te1chniques. Frontiers in Bioengineering & Biotechnology, 2015,3(77):77.
[22] MARTIGNANO F, ROSSI L, MAUGERI A, GALLÀ V, CONTEDUCA V, DE GIORGI U, CASADIO V, SCHEPISI G . Urinary RNA-based biomarkers for prostate cancer detection. Clinica Chimica Acta, 2017,473:96-105.
doi: 10.1016/j.cca.2017.08.009
[23] HAO Y P, QIU J H, ZHANG D B, YU C G . Long non-coding RNA DANCR, a prognostic indicator, promotes cell growth and tumorigenicity in gastric cancer. Tumour Biology, 2017,39(6):1010428317699798.
doi: 10.1177/1010428317699798 pmid: 28618943
[24] HUANG Q, CHI Y, DENG J, LIU Y, LU Y, CHEN J, DONG S . Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Scientific Reports, 2017,7(1):9392.
doi: 10.1038/s41598-017-09818-6 pmid: 5570922
[25] LI M, LI X, ZHUANG Y, FLEMINGTON E K, ZHEN L, SHAN B . Induction of a novel isoform of the lncRNA HOTAIR in Claudin-low breast cancer cells attached to extracellular matrix. Molecular Oncology, 2017,11(12):1698-1710.
doi: 10.1002/1878-0261.12133 pmid: 28846832
[26] YONEDA R, SATOH Y, YOSHIDA I, KAWAMURA S, KOTANI T, ATSUSHI . A genomic region transcribed into a long noncoding RNA interacts with the Prss42/Tessp-2 promoter in spermatocytes during mouse spermatogenesis, and its flanking sequences can function as enhancers. Molecular Reproduction & Development, 2016,83(6):541-557.
doi: 10.1002/mrd.22650 pmid: 27111572
[27] RAN M, CHEN B, LI Z, WU M, LIU X, HE C, ZHANG S, LI Z . Systematic identification of long non-coding RNAs in immature and mature porcine testes. Biology of Reproduction, 2016,94(4):77.
doi: 10.1095/biolreprod.115.136911 pmid: 26935596
[28] CABILI M N, TRAPNELL C, GOFF L, KOZIOL M, TAZON-VEGA B, REGEV A, RINN J L . Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 2011,25(18):1915.
[29] DERRIEN T, JOHNSON R, BUSSOTTI G, TANZER A, DJEBALI S, TILGNER H, GUERNEC G, MARTIN D, MERKEL A, KNOWLES DG, LAGARDE J, VEERAVALLI L, RUAN X, RUAN Y, LASSMANN T, CARNINCI P, BROWN J B, LIPOVICH L, GONZALEZ J M, THOMAS M, DAVIS C A, SHIEKHATTAR R, GINGERAS T R, HUBBARD T J, NOTREDAME C, HARROW J, GUIGÓ R . The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research , 2012,22:1775-1789.
doi: 10.1101/gr.132159.111 pmid: 22955988
[30] GLSS B S, DINGER M E . The specificity of long moncoding RNA expression . Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2015,1859(1):16-22.
[31] LÓPEZ-ORTEGA O, OVALLE-GARCÍA E, ORTEGA-BLAKE I, ANTILLÓN A, CHÁVEZ-MUNGUÍA B, PATIÑO-LÓPEZ G, FRAGOSO- SORIANO R, SANTOS-ARGUMEDO L . Myo1g is an active player in maintaining cell stiffness in B-lymphocytes. Cytoskeleton, 2016,73(5):258-268.
doi: 10.1002/cm.21299 pmid: 27106882
[32] CALLEGARI S, RICHTER F, CHOJNACKA K, JANS DC, LORENZI, PACHEU-GRAU D, JAKOBS S, LENZ C, URLAUB H, DUDEK J, CHACINSKA A, REHLING P . TIM29 is a subunit of the human carrier translocase required for protein transport. Febs Letters, 2016,590(23):4147-4158.
doi: 10.1002/1873-3468.12450 pmid: 5215392
[33] KANG Y, BAKER M J, LIEM M, LOUBER J, MCKENZIE M, ATUKORALA I, ANG C S, KEERTHIKUMAR S, MATHIVANAN S, STOJANOVSKI D . Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife,5, (2016-08-14), 2016,5:e17463.
doi: 10.7554/eLife.17463 pmid: 27554484
[34] YADAV N, LEE J, KIM J, SHEN J, HU MC, ALDAZ CM, BEDFORD M T . Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(11):6464-6468.
doi: 10.1073/pnas.1232272100
[35] ZHANG Z, NIKOLAI B C, GATES L A, JUNG S Y, SIWAK E B, HE B, RICE A P, O'MALLEY B W, FENG Q . Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Research, 2017,45(16):9348-9360.
doi: 10.1093/nar/gkx550 pmid: 28637181
[36] KISHORE A, PURCELL R H, NASSIRI-TOOSI Z, HALL R A . Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). Journal of Biological Chemistry, 2015,291(7):3385.
doi: 10.1074/jbc.M115.689349 pmid: 26710850
[37] JEON T W, YANG H, LEE CG, OH ST, SEO D, BAIK I H, LEE E H, YUN I, PARK KR, LEE Y H . Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma. International Journal of Hyperthermia, 2016,32(6):1-9.
doi: 10.3109/02656736.2015.1131338 pmid: 26794618
[38] IHARA M, KINOSHITA A, YAMADA S, TANAKA H, TANIGAKI A, KITANO A, GOTO M, OKUBO K, NISHIYAMA H, OGAWA O, TAKAHASHI C, ITOHARA S, NISHIMUNE Y, NODA M, KINOSHITA M . Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Developmental Cell, 2005,8(3):343-352.
doi: 10.1016/j.devcel.2004.12.005 pmid: 15737930
[39] KISSEL H, GEORGESCU M M, LARISCH S, MANOVA K, HUNNICUTT G R, STELLER H . The Sept4 septin locus is required for sperm terminal differentiation in mice. Developmental Cell, 2005,8(3) : 353-364.
doi: 10.1016/j.devcel.2005.01.021 pmid: 15737931
[40] SHEN C C, CUI X Y, HE Y, KANG Y H, YI C, YANG J L, GOU L T . High phosphorylation status of AKT/mTOR signal in DESI2- reduced pancreatic ductal adenocarcinoma. Pathology & Oncology Research, 2015,21(2):267-272.
doi: 10.1007/s12253-014-9817-3 pmid: 25079376
[41] LIN C, YAN H, YANG J, LI L, TANG M, ZHAO X, NIE C, LUO N, WEI Y, YUAN Z . Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma. Oncotarget, 2017,8(34):56281-56295.
doi: 10.18632/oncotarget.17623 pmid: 28915590
[1] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[2] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[3] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[4] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[5] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[6] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[7] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[8] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[9] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[10] CHEN HuaFeng,TIAN KeChuan,HUANG XiXia,Ablat Sulayman,HE JunMin,TIAN YueZhen,XU XinMing,FU XueFeng,ZHAO BingRu,ZHU Hua,Hanikezi Tulafu. Construction of Co-expression Network of lncRNA and mRNA Related to Hair Follicle Development of Subo Merino Sheep [J]. Scientia Agricultura Sinica, 2019, 52(19): 3471-3484.
[11] LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153.
[12] WEI Cai-hong, WU Ming-ming, LIU Rui-zao, ZHAO Fu-ping, ZHANG Li, DU Li-xin. Research Progress in Muscular Growth and Development of Long Noncoding RNAs [J]. Scientia Agricultura Sinica, 2014, 47(20): 4078-4085.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!