Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (17): 3020-3033.doi: 10.3864/j.issn.0578-1752.2019.17.010

• HORTICULTURE • Previous Articles     Next Articles

Measurements and Modeling of the Impacts of Different Pruning Degrees on Transpiration of Apple Orchard in Hilly Regions

YE MiaoTai1,HUO GaoPeng2,YANG Bo2,ZHAO XiNing1,3,GAO XiaoDong1,3()   

  1. 1 Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi
    2 College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi
    3 Institute of Soil and Water Conservation, Chinese Academy of Science & Ministry of Water Resources, Yangling 712100, Shaanxi
  • Received:2019-04-01 Accepted:2019-06-18 Online:2019-09-01 Published:2019-09-10
  • Contact: XiaoDong GAO E-mail:gao_xiaodong@nwafu.edu.cn

Abstract:

【Objective】 Water deficiency is the major obstacle to restrict the development of apple industry of the Loess Plateau. This study was conducted to investigate the effects of pruning on apple transpiration, aiming to provide helpful information for water management and sustainable development of apple orchards. 【Method】 The study sites was located in Zizhou County, Shaanxi Province, where the apple trees were grown under rain-fed conditions. Sap flow under four pruning intensities, including CK (no pruning), PI-1 (light pruning), PI-2 (moderate pruning) and PI-3 (severe pruning), were measured with thermal dissipation probes. Combining with model simulations (MAESPA), the effects of pruning on transpiration of apple trees were studied.【Result】 The results showed that pruning could effectively reduce the leaf area index (LAI) of apple trees. The total branches, LAI and crown diameter of PI-3 decreased by 28.2%, 30.5% and 9.5%, respectively, compared with the CK. Pruning reduced the transpiration of apple trees significantly. At the intraday scale, when the pruning intensity increased, the peak value of sap flow decreased accordingly. Furthermore, the monthly transpiration gradually decreased from the fruit swelling period to fruit ripening period with the peak value in July and the lowest value in September. Transpiration of intensity II (PI-2) and intensity III (PI-3) was significantly lower than that of CK. During the study period, the transpiration of pruning intensity I (PI-1), intensity II (PI-2) and intensity III (PI-3) decreased by 11.1%, 24.1% and 37.9%, respectively, compared with CK (July-September). Meanwhile, the relationship between pruning intensity and transpiration was analyzed through MAESPA model. MAESPA model simulated the diurnal variation characteristics and daily transpiration of apple trees with a good accuracy. The normalized mean square error was between 0.163 and 0.293; the Nash coefficient was between 0.616 and 0.830 and the consistency coefficient was between 0.907 and 0.960. The results also showed that the model had a relatively poor performance when the photosynthetically active radiation (PAR) and saturated water vapor pressure deficit (VPD) were low. 【Conclusion】 Pruning effectively reduced the transpiration of apple trees. Under the context of light water stress in the Loess Plateau, PI-1 could be applied to orchard to reduce water consumption slightly; under the severe water deficit condition, PI-3 could be used as a promising measure to regulate water consumption of apple trees and promote the green healthy development of orchards.

Key words: apple, pruning, transpiration, rainfed orchards, MAESPA model

Fig. 1

Variation of environmental factors during the study period"

Table 1

Canopy structure and rapid light curves difference in different pruning treatments"

处理 叶面积
Leaf area
(m2)
株高
Plant height
(cm)
冠幅直径
Canopy diameter
(cm)
总枝量
Total branches
(×104·hm-2)
产量
Yield
(kg·tree-1)
最大电子传递速率
Jmax
(μmol·m-2·s-1)
最大羧化速率
Vmax
(μmol·m-2·s-1)
初始斜率
α (-)
CK 8.81±0.46a 310±24a 210±18a 100.02±6.01a 4.33±0.22a 163.40±11.06a 81.89±6.74a 0.27±0.03a
PI-1 7.93±0.36b 302±15a 205±33a 95.35±5.97a 4.44±0.26a 166.43±7.73a 83.74±4.71a 0.28±0.03a
PI-2 6.50±0.26c 320±14a 200±20a 83.35±3.35b 4.06±0.27ab 178.18±16.09a 90.90±9.81a 0.27±0.02a
PI-3 5.09±0.17d 300±21a 190±14a 71.85±4.67c 3.64±0.19b 185.43±7.56a 95.32±4.61a 0.27±0.03a

Fig. 2

Canopy structure difference under different pruning treatments"

Fig. 3

Daily variation of transpiration with different treatments under different weather conditions"

Fig. 4

Changes in transpiration of apple tree at different time scales during the trial period Different lowercase letters indicate significant differences among different treatments at P<0.05 level"

Fig. 5

A comparison between the observed and simulated diurnal variation in different weather condition"

Fig. 6

The relationship between simulated transpiration capacity and meteorological factors"

Fig. 7

Observed and simulated apple tree transpiration under different pruning treatments"

[1] Food and Agriculture Organization of the United Nations. FAO Statistical Databases [DB/OL]. [2019-02-08]. .
[2] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2017. (in Chinese)
[3] PENG X X, GUO Z, ZHANG Y J, LI J . Simulation of long-term yield and soil water consumption in apple orchards on the Loess Plateau, China, in response to fertilization. Scientific Reports, 2017,7(1):5444.
[4] 王绍飞, 赵西宁, 高晓东, 霍高鹏, 潘燕辉 . 黄土丘陵区盛果期苹果树土壤水分利用策略. 林业科学, 2018,54(10):31-38.
WANG S F, ZHAO X N, GAO X D, HUO G P, PAN Y H . Water use source of apple trees with full productive agein Loess hilly region. Scientia Silvae Sinicae, 2018,54(10):31-38. (in Chinese)
[5] 王力, 李裕元, 李秧秧 . 黄土高原生态环境的恶化及其对策. 自然资源学报, 2004,19(2):263-271.
doi: 10.11849/zrzyxb.2004.02.018
WANG L, LI Y Y, LI Y Y . The eco-environment deterioration and its counter-measures in the Loess Plateau. Journal of Natural Resources, 2004,19(2):263-271. (in Chinese)
doi: 10.11849/zrzyxb.2004.02.018
[6] SUN Q H, MIAO C Y, DUAN Q Y, WANG Y F . Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Global & Planetary Change, 2015,132(1):1-10.
[7] 张宝庆, 吴普特, 赵西宁, 高晓东 . 基于可变下渗容量模型和Palmer干旱指数的区域干旱化评价研究. 水利学报, 2012,43(8):926-934.
ZHANG B Q, WU P T, ZHAO X N, GAO X D . Study on regional drought assessment based on variable infiltration capacity model and Palmer drought severity index. Journal of Hydraulic Engineering, 2012,43(8):926-934. (in Chinese)
[8] 王石言, 王力, 韩雪, 张林森 . 黄土塬区盛果期苹果园的蒸散特征. 林业科学, 2016,52(1):128-135.
doi: 10.11707/j.1001-7488.20160115
WANG S Y, WANG L, HAN X, ZHANG L S . Evapotranspiration characteristics of apple orchard at peak period of fruiting in Loess Tableland. Scientia Silvae Sinicae, 2016,52(1):128-135. (in Chinese)
doi: 10.11707/j.1001-7488.20160115
[9] 焦瑞, 赵英, 司炳成, 兰志龙, 张建国 . 黄土高原退耕还林措施对深层土壤含水率的影响. 干旱地区农业研究, 2017,35(35):135.
JIAO R, ZHAO Y, SI B C, LAN Z L, ZHANG J G . Effects of conversion of cropland to forest measures on deep soil moisture in Loess Plateau. Agricultural Research in the Arid Areas, 2017,35(35):135. (in Chinese)
[10] 邵明安, 贾小旭, 王云强, 朱元骏 . 黄土高原土壤干层研究进展与展望. 地球科学进展, 2016,31(1):14-22.
SHAO M A, JIA X X, WANG Y Q, ZHU Y J . A review of studies on dried soil layers in the Loess Plateau. Advances in Earth Science, 2016,31(1):14-22. (in Chinese)
[11] 包睿, 邹养军, 马锋旺, 折小锋, 党志明, 贺武春 . 种植年限及密度对渭北旱塬苹果园深层土壤干燥化的影响. 农业工程学报, 2016,32(15):143-149.
BAO R, ZOU Y J, MA F W, SHE X F, DANG Z M, HE W C . Effects of planting year and density on deep soil desiccation of apple orchards in Weibei dryland. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(15):143-149. (in Chinese)
[12] LORDAN J, FRANCESCATTO P, DOMINGUEZ L I, ROBINSON T L . Long-term effects of tree density and tree shape on apple orchard performance, a 20 year study-Part 1, agronomic analysis. Scientia Horticulturae, 2018,238:303-317.
[13] MA L H, WANG X, GAO Z Y, WANG Y K, NIE Z Y, LIU S Y . Canopy pruning as a strategy for saving water in a dry land jujube plantation in a Loess hilly region of China. Agricultural Water Management, 2019,216:436-443.
[14] KUMAR M, RAWAT V, RAWAT J M S, TOMAR Y K . Effect of pruning intensity on peach yield and fruit quality. Scientia Horticulturae, 2010,125(3):218-221.
[15] WILKIE J D, SEDGLEY M, OLESEN T . The timing of pruning affects flushing, flowering and yield of macadamia. Crop & Pasture Science, 2010,61(7):588-600.
[16] 李明霞, 白岗栓, 闫亚丹, 耿桂俊, 杜社妮 . 山地苹果树更新修剪对树体营养及生长的影响. 园艺学报, 2011,38(1):139-144.
LI M X, BAI G S, YAN Y D, GENG G J, DU S N . Effects of renewal pruning on mountain apple tree’s nutrition and growth. Acta Horticulturae Sinica, 2011,38(1):139-144. (in Chinese)
[17] 宋凯, 魏钦平, 岳玉苓, 王小伟, 张继祥 . 不同修剪方式对'红富士'苹果密植园树冠光分布特征与产量品质的影响. 应用生态学报, 2010,21(5):1224-1230.
SONG K, WEI Q P, YUE Y L, WANG X W, ZHANG J X . Effects of different pruning modes on the light distribution characters and fruit yield and quality in densely planted 'Red Fuji' apple orchard. Chinese Journal of Applied Ecology, 2010,21(5):1224-1230. (in Chinese)
[18] 汪星, 高志永, 汪有科, 聂真义, 靳姗姗, 董建国 . 修剪与覆盖对黄土丘陵区枣林土壤干层的修复效应. 林业科学, 2018,54(07):24-30.
WANG X, GAO Z Y, WANG Y K, NIE Z Y, JIN S S, DONG J G . Effects of pruning and mulching on soil desiccation remediation in rain-fed Jujube plantation in the semi-arid Loess hilly gull region. Scientia Silvae Sinicae, 2018,54(07):24-30. (in Chinese)
[19] SUN X C, ONDA Y, OTSUKI K, KATO H, HIRATA A, GOMI T . The effect of strip thinning on tree transpiration in a Japanese cypress (Chamaecyparis obtusa Endl.) plantation. Agricultural and Forest Meteorology, 2014,197(6):123-135.
[20] WENG S H, KUO S R, GUAN B T, CHANG T Y, HSU H W, SHEN C W . Microclimatic responses to different thinning intensities in a Japanese cedar plantation of northern Taiwan. Forest Ecology and Management, 2007,241(1):91-100.
[21] 魏新光, 陈滇豫, Liu Shouyang, 汪星, 高志永, 汪有科 . 修剪对黄土丘陵区枣树蒸腾的调控作用. 农业机械学报, 2014,45(12):194-202.
WEI X G, CHEN D Y, LIU S Y, WANG X, GAO Z Y, WANG Y K . Effect of trim on jujube transpiration in Loess hilly region. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12):194-202. (in Chinese)
[22] 张文飞, 汪星, 汪有科, 张敬晓, 惠倩 . 黄土丘陵区深层干化土壤中节水型修剪枣树生长及耗水. 农业工程学报, 2017,33(7):140-148.
ZHANG W F, WANG X, WANG K Y, ZHANG J X, HUI Q . Growth and water consumption of jujube with water-saving pruning in deep dried soil of Loess hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(7):140-148. (in Chinese)
[23] FORRESTER D I, COLLOPY J J, BEADLE C L, WARREN C R, BAKER T G . Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. Forest Ecology and Management, 2012,266:286-300.
[24] ALCORN P J, FORRESTER D I, THOMAS D S, JAMES R, SMITH R G B, NICOTRA A B, BAUHUS J . Changes in whole-tree water use following live-crown pruning in young plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Forests, 2013,4(1):106-121.
[25] CHRISTINA M, NOUVELLON Y, LACLAU J P, STAPE J L, BOUILLET J P, LAMBAIS G R, MAIRE G L . Importance of deep water uptake in tropical eucalypt forest. Functional Ecology, 2017,31:509-519.
[26] VEZY R, CHRISTINA M, ROUPSARD O, NOUVELLON Y, DUURSMA R, MEDLYN B, SOMA M, CHARBONNIER F, BLITZ-FRAYRET C, STAPE J L, LACLAU J P, FILHO E, BONNEFOND J M, RAPIDEL B, DO F C, ROCHETEAU A, PICART D, BORGONOVO C, LOUSTAU D, MAIRE G L . Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model. Agricultural and Forest Meteorology, 2018,253:203-217.
[27] CHRISTINA M, MAIRE G L, BATTIE-LACLAU P, NOUVELLON Y, BOUILLET J P, JOURDAN C, GONCALVES J, LACLAU J P . Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light use efficiency in Eucalyptus grandis plantations. Global Change Biology, 2015,21(5):2022-2039.
[28] WULLSCHLEGER S D . Biochemical limitations to carbon assimilation in C3 plants-A retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 1993,44(262):907-920.
[29] NIU Z M, XIE P, YU L, LI Z Q, WANG H N, HAN P P . Impact of tree-thinning on foliar chlorophyll fluorescence parameters of open-central apple trees. Bangladesh Journal of Botany, 2015,44(5):889-896.
[30] 杜斌, 胡笑涛, 王文娥, 马黎华, 周始威 . 交替沟灌玉米灌浆期茎流影响因子敏感性分析与模型适用性研究. 中国农业科学, 2018,51(2):233-245.
doi: 10.3864/j.issn.0578-1752.2018.02.004
DU B, HU X T, WANG W E, MA L H, ZHOU S W . Stem flow influencing factors sensitivity analysis and stem flow model applicability in filling stage of alternate furrow irrigated maize. Scientia Agricultura Sinica, 2018,51(2):233-245. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.004
[31] 张钧恒, 马乐乐, 李建明 . 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018,51(14):2788-2798.
doi: 10.3864/j.issn.0578-1752.2018.14.015
ZHANG J H, MA L L, LI J M . Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018,51(14):2788-2798. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.015
[32] 贾国栋, 陈立欣, 李瀚之, 刘自强, 余新晓 . 北方土石山区典型树种耗水特征及环境影响因子. 生态学报, 2018,38(10):3441-3452.
doi: 10.5846/stxb201703310559
JIA G D, CHEN L X, LI H Z, LIU Z Q, YU X X . The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area. Acta Ecologica Sinica, 2018,38(10):3441-3452. (in Chinese)
doi: 10.5846/stxb201703310559
[33] 张慧玲, 丁亚丽, 陈洪松, 王克林, 聂云鹏 . 喀斯特出露基岩生境两种典型乔木的树干液流特征. 应用生态学报, 2017,28(8):2431-2437.
ZHANG H L, DING Y L, CHEN H S, WANG K L, NIE Y P . Characteristics of sap flow of two typical trees in exposed bedrock habitat of Karst region,China. Chinese Journal of Applied Ecology, 2017,28(8):2431-2437. (in Chinese)
[34] GYENGE J E, FERNANDEZ M E, SCHLICHTER T M . Effect of pruning on branch production and water relations in widely spaced ponderosa pines. Agroforestry Systems, 2009,77(3):223-235.
[35] QUENTIN A G, O GRADY A P, BEADLE C L, WORLEDGE D, PINKARD E A . Responses of transpiration and canopy conductance to partial defoliation of Eucalyptus globulus trees. Agricultural and Forest Meteorology, 2011,151(3):356-364.
[36] NAMIREMBE S, BROOK R M, ONG C K . Manipulating phenology and water relations in Senna spectabilis in a water limited environment in Kenya. Agroforestry Systems, 2009,75(3):197-210.
[37] CHEN D Y, WANG Y K, WANG X, NIE Z Y, GAO Z Y, ZHANG L L . Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region. Agricultural Water Management, 2016,178:258-270.
[38] 赵现华 . 修剪对葡萄液流和光合同化物运输分配特性的扰动[D]. 西北农林科技大学, 2013.
ZHAO X H . Pruning effects on sap flow and transportation assignment of photosynthates in grapevine[D]. Yangling: Northwest A&F University, 2013. (in Chinese)
[39] DOMEC J C, GARTNER B L . Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees, 2001,15(4):204-214.
[40] STRATTON L, GOLDSTEIN G, MEINZER F C . Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant Cell & Environment, 2000,23(1):99-106.
[41] 李卫民, 张佳宝 . 植物木质部导管栓塞. 植物生理学报, 2008,44(3):581-584.
LI W M, ZHANG J B . Embolism in xylem vessel of plants. Plant Physiology Journal, 2008,44(3):581-584. (in Chinese)
[42] 员玉良, 程强, Lutz Damerow, 孙宇瑞 . 基于茎直径和茎流复合测量的植物根压无损观测方法. 农业机械学报, 2015,46(11):290-295.
YUAN Y L, CHENG Q, LUTZ D, SUN Y R . Non-destructive observation of plant root pressure based on combined measurement of stem diameter and sap flow. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(11):290-295. (in Chinese)
[43] FORD C R, GORANSON C E, MITCHELL R J, WILL R E, TESKEY R O . Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees. Tree Physiology, 2004,24(9):941-950.
[44] 姚增旺, 褚建民, 吴利禄, 袁祺, 党宏忠, 张晓艳, 甘红豪, 姜生秀 . 民勤绿洲荒漠过渡带梭梭树干液流的时滞特征. 应用生态学报, 2018,29(7):2339-2346.
YAO Z W, CHU J M, WU L L, YUAN Q, DANG H Z, ZHANG X Y, GAN H H, JIANG S X . Time lag characteristics of the stem sap flow of Haloxylon ammodendron in the Minqin oasis-desert ectone. Chinese Journal of Applied Ecology, 2018,29(7):2339-2346. (in Chinese)
[45] 王华, 赵平, 蔡锡安, 马玲, 饶兴权, 曾小平 . 马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应. 应用生态学报, 2008,19(2):225-230.
WANG H, ZHAO P, CAI X A, MA L, RAO X Q, ZENG X P . Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium. Chinese Journal of Applied Ecology, 2008,19(2):225-230. (in Chinese)
[46] ZWEIFEL R , HÄSLER R. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 2001,21(9):561.
[47] MEDLYN B E, PEPPER D A, O'GRADY A P, KEITH H . Linking leaf and tree water use with an individual-tree model. Tree Physiology, 2007,27(12):1687-1699.
[48] 亓玉飞, 尹伟伦, 夏新莉, 孙尚伟 . 修枝对欧美杨107杨水分生理的影响. 林业科学, 2011,47(3):33-38.
doi: 10.11707/j.1001-7488.20110306
QI Y F, YIN W L, XIA X L, SUN S W . Effects of pruning on water physiology of poplar clone Populus × euramericana cv. ‘74/76’. Scientia Silvae Sinicae, 2011,47(3):33-38. (in Chinese)
doi: 10.11707/j.1001-7488.20110306
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[7] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] YIN Wen,GUO Yao,FAN Hong,FAN ZhiLong,HU FaLong,YU AiZhong,ZHAO Cai,CHAI Qiang. Effects of Different Plastic Film Mulching and Using Patterns on Soil Water Use of Maize in Arid Irrigated Area of Northwestern China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4750-4760.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[12] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[13] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[14] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[15] ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!