Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (16): 2912-2920.doi: 10.3864/j.issn.0578-1752.2019.16.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Effects of Natural Bee Bread on Blood Lipid, Antioxidation and Immune Function in Rats with Hyperlipidemia

LI Zhen1,LIU ZhiYong2,JIANG WuJun3,HE XuJiang1,YAN WeiYu1,ZHANG LiZhen1,ZENG ZhiJiang1()   

  1. 1 Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045
    2 Laboratory Animal Science and Technology Center, Jiangxi Chinese Medicine University, Nanchang 330006
    3 Apicultural Research Institute of Jiangxi Province, Nanchang 330052
  • Received:2019-04-08 Accepted:2019-04-19 Online:2019-08-16 Published:2019-08-21
  • Contact: ZhiJiang ZENG E-mail:bees1965@sina.com

Abstract:

【Objective】Bee bread is that the worker bee stores the collected pollen mass in the nest room, then bites the pollen mass, spits honey moist, and ferments it for 2 to 3 weeks. Bee bread provides essential nutritional supply for the development of old larvae and young bees. Although the traditional view is that the nutritional value of natural bee bread is higher than that of bee pollen, but there is no scientific basis. In order to evaluate the nutritional effect of bee bread scientifically, the effects of natural bee bread on blood lipid, antioxidation and immune function in rats were systematically studied with bee pollen as control.【Method】The natural bee bread producer designed by the Honeybee Research Institute of Jiangxi Agricultural University was used to produce natural bee bread and pollen by honey bee workers (Apis mellifera) at the flowering stage of white lotus. The hyperlipidemia rats used in this study were established by standard method. A blank control group and a high-fat model control group were prepared. Three doses of bee bread and pollen (low-dose group of 80 mg?kg -1, middle-dose group of 400 mg?kg -1, and high-dose group of 800 mg?kg -1) were fed to hyperlipidemia rats, respectively. After intragastric administration natural bee bread and bee pollen for 60 days, the levels of blood lipids including triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL) and high density lipoprotein (HDL-C) were measured. Additionally, antioxidant indexes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (T-AOC), immune factors interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were detected in blood.【Result】Compared with the high-fat model group, low-dose bee bread treatment group significantly reduced the levels of TG, TC and LDL in the blood of hyperlipidemia rats. Middle-dose bee bread treatment group significantly increased the level of HDL-C. Low-dose bee pollen treatment group significantly reduced the levels of TG and TC, which indicated that both bee bread and bee pollen had a good effect on reducing hyperlipidemia. Additionally, low-, middle-, high-dose bee bread, as well as low- and middle-dose bee pollen significantly increased the content of TNF-α, which indicated that both bee bread and bee pollen enhanced immune responses compared with the high-fat model group. The SOD content in the blood of rats with high-dose bee pollen group increased significantly, but the differences among the three doses of bee bread groups, the low- and the middle-dose groups of bee pollen were not statistically significant compared with the high-fat model group. It suggested that the high-dose bee pollen enhanced antioxidant capacity. Compared with the high-fat model group, the contents of GSH-Px, T-AOC and MDA among the six experimental groups were not significantly different. Compared with the low- and middle-dose bee pollen groups, the middle-dose bee bread group significantly increased the content of HDL-C. Compared with the three groups of bee pollen, middle-dose bee bread group significantly increased the TNF-α content.【Conclusion】Combined with TG, TC, LDL, HDL-C and TNF-α, the effects of natural bee bread on reducing blood lipid and enhancing immunity were stronger than those of bee pollen. Natural bee bread is worthy of further development and utilization.

Key words: honeybee bread, rat, blood lipid, antioxidation, immunity

Table 1

Blood triglyceride content after model establishment"

试验分组
Experimental grouping
甘油三酯
Triglyceride (mmol?L-1)
C 0.839±0.086b
HM 2.899±0.199a
HB-L 2.991±0.150a
HB-M 2.987±0.165a
HB-H 2.964±0.134a
HP-L 2.981±0.197a
HP-M 2.942±0.140a
HP-H 2.951±0.106a

Table 2

Effects of bee bread and pollen on reducing blood lipid in rats"

试验分组
Experimental grouping
甘油三酯
Triglyceride (mmol?L-1)
总胆固醇
Total cholesterol (mmol?L-1)
低密度脂蛋白
Low density lipoprotein (mmol?L-1)
高密度脂蛋白
High density lipoprotein (mmol?L-1)
C 0.98±0.11b 2.16±0.28b 0.43±0.04b 0.32±0.04a
HM 1.65±0.24a 3.24±0.44a 0.77±0.09a 0.21±0.03c
HB-L 1.01±0.16b 2.09±0.22b 0.49±0.07b 0.23±0.03bc
HB-M 1.11±0.19b 2.51±1.20ab 0.61±0.09ab 0.30±0.04ab
HB-H 1.28±0.18ab 2.38±0.32b 0.61±0.08ab 0.26±0.03abc
HP-L 0.97±0.10b 2.34±0.12b 0.64±0.05ab 0.21±0.02c
HP-M 1.28±0.17ab 2.20±0.20b 0.60±0.09ab 0.21±0.02c
HP-H 1.23±0.12ab 2.12±0.20b 0.58±0.16ab 0.28±0.03abc

Table 3

Effects of bee bread and pollen on blood antioxidation in rats"

试验分组Experimental grouping 超氧化物歧化酶
Superoxide dismutase
(U?mL-1)
谷胱甘肽过氧化物酶
Glutathione peroxidase
(U?mL-1)
总抗氧化活力
Total antioxidation
capacity (U?mL-1)
丙二醛
Malondialdehyde
(nmol?L-1)
C 301.26±31.10a 177.78±30.52a 143.43±4.32a 7.60±0.35a
HM 279.94±23.74a 155.20±18.97a 117.58±6.01bcd 8.05±0.38ab
HB-L 250.19±29.09a 157.41±16.23a 122.43±2.23b 9.15±0.28b
HB-M 257.71±13.85a 161.73±27.77a 108.76±3.20d 8.93±0.58b
HB-H 274.34±17.28a 156.79±25.79a 121.99±2.85bd 8.75±0.42b
HP-L 316.89±31.89ab 128.40±16.61a 113.92±2.49cd 8.47±0.22ab
HP-M 255.57±25.38a 151.23±26.13a 125.02±2.53b 8.37±0.55ab
HP-H 390.74±16.40b 183.75±10.05a 122.92±3.24bc 8.71±0.22ab

Table 4

Effects of bee bread and pollen on blood immune factor in rats"

试验分组
Experimental grouping
白细胞介素-6
Interleukin 6
(pg?mL-1)
肿瘤坏死因子-α
Tumor necrosis factor α
(pg?mL-1)
C 301.24±12.13a 252.07±9.128a
HM 285.71±9.49ab 129.34±5.87d
HB-L 287.07±11.53ab 207.05±11.28b
HB-M 312.75±8.58a 248.03±17.07a
HB-H 258.51±13.25b 188.43±21.00bc
HP-L 279.81±5.12bc 193.34±13.92bc
HP-M 255.16±16.20c 187.26±15.16bc
HP-H 257.69±8.62bc 150.66±16.56cd

Fig. 1

The liver histopathological sections of rats (HE staining ×400)"

[1] 江武军, 曾志将 . 蜂粮研究进展. 黑龙江畜牧兽医, 2015(1):118-119.
JIANG W J, ZENG Z J . Advances on the bee bread research. Heilongjiang Animal Science and Veterinary Medicine, 2015(1):118-119. (in Chinese)
[2] ANĐELKOVIĆ B, JEVTIĆ G, MLADENOVIĆ M, MARKOVIĆ J, PETROVIĆ M, NEDIĆ N . Quality of pollen and honey bee bread collected in spring. Journal of Hygienic Engineering and Design, 2012,1:275-277.
[3] 张少斌 . 分合式巢房巢脾: CN99222971.5[P]. ( 1999-03-02) [2019- 04-08].
ZHANG S B . Split type of comb: CN99222971.5[P]. ( 1999-03-02) [2019-04-08]. (in Chinese)
[4] 张少斌, 张明海 . 开合式巢脾: CN200520020078.6[P]. (2005-01-17) [2019-04-08].
ZHANG S B, ZHANG M H . Retractable comb: CN200520020078. 6[P]. (2005-01-17) [2019-04-08]. (in Chinese)
[5] 张少斌, 张石胜 . KF-1、2型塑料巢脾在养蜂生产上的应用. 中国养蜂, 1999,50(4):17.
ZHANG S B, ZHANG S S . The application in the production of plastic comb bee of KF-1 or KF-2. Apiculture of China, 1999,50(4):17. (in Chinese)
[6] 苏松坤, 陈盛禄 . 天然蜂粮的生产方法及器具: CN200410073451. 4[P]. ( 2004-12-16) [2019-04-08].
SU S K, CHEN S L . Method and apparatus for producing natural bee bread: CN200410073451.4[P]. ( 2004-12-16) [2019-04-08]. (in Chinese)
[7] 苏松坤, 陈盛禄, 刘华, 林雪珍 . 天然蜂粮生产方法. 养蜂科技, 2006(6):32-33.
SU S K, CHEN S L, LIU H, LIN X Z . Method for producing natural bee bread. Apicultural Science and Technology, 2006(6):32-33. (in Chinese)
[8] AKHMETOVA R, SIBGATULLIN J, GARMONOV S, AKHMETOVA L . Technology for extraction of bee-bread from the honeycomb. Procedia Engineering, 2012,42:1822-1825.
[9] 江武军, 何旭江, 吴小波, 席芳贵, 曾志将 . 天然蜂粮生产技术及贮存规律研究. 江西农业大学学报, 2018,40(6):1293-1298.
JIANG W J, HE X J, WU X B, XI F G, ZENG Z J . Study on production technology and storage regular analysis of natural honeybee bread. Acta Agriculturae Universitatis Jiangxiensis, 2018,40(6):1293-1298. (in Chinese)
[10] 江武军, 吴小波, 刘光楠, 何旭江, 颜伟玉, 曾志将 . 天然蜂粮生产技术研究与应用. 中国农业科学, 2017,50(19):3828-3836.
doi: 10.3864/j.issn.0578-1752.2017.19.019
JIANG W J, WU X B, LIU G N, HE X J, YAN W Y, ZENG Z J . Research and application of production technology of natural honeybee bread. Scientia Agricultura Sinica, 2017,50(19):3828-3836. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.19.019
[11] 费起充 . 蜂粮的制作. 蜜蜂杂志, 1998(7):15.
FEI Q C . Bee bread production. Journal of Bee, 1998(7):15. (in Chinese)
[12] 苏松坤 . 蜂粮(bee bread)的酿制机理和营养价值的研究[D]. 杭州: 浙江大学, 2000.
SU S K . Studies on brew mechanism and nutritive value of bee bread[D]. Hangzhou: Zhejiang University, 2000. (in Chinese)
[13] 苏松坤, 陈盛禄, 林雪珍, 胡福良, 余旭平, 汪礼国, 王正二 . 茶(Camellia sinensis)蜂花粉与蜂粮中花粉形态和营养成分的比较. 中国养蜂, 2000,51(6):3-6.
SU S K, CHEN S L, LIN X Z, HU F L, YU X P, WANG L G, WANG Z E . The comparison of pollen morpha and nutrient components between corbicular tea (Camellia sinensis) pollen and bee bread. Apiculture of China, 2000,51(6):3-6. (in Chinese)
[14] 苏松坤, 陈盛禄 . 茶(Camellia sinensis)蜂花粉及其蜂粮的营养成分研究. 上海交通大学学报 (农业科学版), 2002,20(2):95-99.
SU S K, CHEN S L . The research of nutrient compositions of tea (Camellia sinensis) corbicular pollen and tea bee bread. Journal of Shanghai Jiao Tong University (Agricultural Science), 2002,20(2):95-99. (in Chinese)
[15] 苏松坤, 陈盛禄, 李言清 . 人工蜂粮的制备方法: CN03150405.1[P]. ( 2003-08-15) [2019-04-08].
SU S K, CHEN S L, LI Y Q . The preparation method of artificial bee bread: CN03150405.1[P]. ( 2003-08-15) [2019-04-08]. (in Chinese)
[16] VÁSQUEZ A, OLOFSSON T C . The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 2009,48(3):189-195.
[17] DUAN C R, FENG Y F, ZHOU H, XIA X H, SHANG Y N, CUI Y M . Optimization of fermentation condition of man-made bee-bread by response surface methodology//ZHANG T C, NAKAJIMA M. Advances in Applied Biotechnology. Springer Berlin Heidelberg, 2015: 353-363.
[18] 崔学沛 . 意大利蜜蜂天然成熟蜂粮菌种鉴定及人工蜂粮发酵影响因素的探究[D]. 泰安: 山东农业大学, 2015.
CUI X P . The identification of strains in natural mature bee bread of honey bee (A. mellifera L.) and study on the fermentation conditions of artificial bee bread[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[19] 石憬林 . 蜂粮营养并不高于蜂花粉. 养蜂科技, 1994(3):20-21.
SHI J L . Bee bread nutrition is not higher than bee pollen. Apicultural Science and Technology, 1994(3):20-21. (in Chinese)
[20] 袁耀东 . 蜂粮的成分和作用. 中国养蜂, 1991(6):36-37.
YUAN Y D . Composition and function of bee food. Apiculture of China, 1991(6):36-37. (in Chinese)
[21] BALTRUŠAITYTE V, VENSKUTONIS P R, CEKSTERYTE V . Antibacterial activity of honey and beebread of different origin against S. aureus and S. epidermidis. Food Technology and Biotechnology, 2007,45(2):201-208.
[22] DEGRANDI-HOFFMAN G, ECKHOLM B J, HUANG M H . Concentrations of nutrients in pollen can change after conversion to bee bread. American Bee Journal, 2013,153(11):1195-1198.
[23] 曾志将 . 养蜂学. 3版. 北京: 中国农业出版社, 2017.
ZENG Z J. Apiculture. 3rd ed. Beijing: China Agriculture Press, 2017. (in Chinese)
[24] 李楠, 赵静, 吴茹, 王文君 . 青钱柳多糖对高脂血症小鼠脂代谢及PPARγ、ATGL基因mRNA表达的影响. 中国食品学报, 2015,15(9):9-14.
LI N, ZHAO J, WU R, WANG W J . Research on the influence of Cyclocarya paliurus(Batal.) Iljinskaja polysaccharide on PPARγ and ATGL gene expression in hyperlipoidemia mice. Journal of Chinese Institute of Food Science and Technology, 2015,15(9):9-14. (in Chinese)
[25] 包国良, 傅颖 . 卵磷脂花粉对实验性高血脂大鼠的降血脂效应及其机制研究. 医学研究杂志, 2008,37(8):99-102.
BAO G L, FU Y . Study of the effect and function mechanism of pine pollen on reducing the blood-level of the experimental mice. Journal of Medical Research, 2008,37(8):99-102. (in Chinese)
[26] 王开发, 王隆华, 支崇远, 陈素英, 邹军 . 玉米花粉黄酮类物质对SD大鼠降血脂作用的研究. 放射免疫学杂志, 2002,15(6):368-370.
WANG K F, WANG L H, ZHI C Y, CHEN S Y, ZOU J . Effect of flavone material in maize pollen on reducing blood fat of SD rats. Journal of Radioimmunology, 2002,15(6):368-370. (in Chinese)
[27] 樊柏林, 刘烈刚 . 破壁松花粉对大鼠降血脂效应及作用机制研究. 职业与健康, 2005,21(6):809-811.
FAN B L, LIU L G . Study on the effect and functional mechanism of pine pollen on reducing the blood-fat level of the experimental mice. Occupation and Health, 2005,21(6):809-811. (in Chinese)
[28] 杜孟浩, 王敬文, 张金萍, 汪永义, 高华 . 松花粉超临界二氧化碳萃取物降血脂功能实验研究. 中国现代医学杂志, 2008,18(21):3171-3173, 3176.
DU M H, WANG J W, ZHANG J P, WANG Y Y, GAO H . Effects of oil extracted with supercritical CO2 fluid from pine pollen (Pinus massoniana) on the regulation of blood lipid. China Journal of Modern Medicine, 2008,18(21):3171-3173, 3176. (in Chinese)
[29] 曾志将, 汪礼国, 饶波, 樊兆斌, 谢国秀 . 蜂花粉多糖对大鼠降血脂效果研究. 江西农业大学学报, 2004,26(3):406-408.
ZENG Z J, WANG L G, RAO B, FAN Z B, XIE G X . A study on the effect of honeybee pollen polysaccharide on decreasing lipoidemia in rat. Acta Agriculturae Universitis Jiangxiensis, 2004,26(3):406-408. (in Chinese)
[30] SOBRAL F, CALHELHA R C, BARROS L, DUENAS M, TOMAS A, SANTOS-BUELGA C, VILAS-BOAS M, FERREIRA I C . Flavonoid composition and antitumor activity of bee bread collected in Northeast Portugal. Molecules, 2017,22:248.
[31] 韩敏 . 黄酮类化合物降血脂作用研究进展. 西安文理学院学报 (自然科学版), 2013,16(4):11-15.
HAN M . Recent studies on flavonoids in lowering blood lipid. Journal of Xi’an University of Arts and Science (Natural Science Edition), 2013,16(4):11-15. (in Chinese)
[32] 梁伟伟, 严瑾, 吴利花, 范春雷 . 山楂叶总黄酮对高脂血症大鼠脂代谢的影响. 健康研究, 2010,30(1):8-11.
LIANG W W, YAN J, WU L H, FAN C L . Effect of hawthorn leaf flavonoids on lipid metabolism in hyperlipidemia rats. Health Research, 2010,30(1):8-11. (in Chinese)
[33] 李家富, 何涛, 李刚, 罗兴林, 魏宗德 . 醋柳黄酮单体对高密度脂蛋白氧化修饰的影响. 现代中西医结合杂志, 2004,13(24):3234-3235.
LI J F, HE T, LI G, LUO X L, WEI Z D . Effect of Hippophae rhamnoides flavonoid monomers on oxidative modification of high density lipoprotein. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2004,13(24):3234-3235. (in Chinese)
[34] 夏广英 . 蜂花粉中总黄酮的提取研究[D]. 福州: 福建农林大学, 2008.
XIA G Y . Study on the extraction of the total flavonoids in bee-pollen[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
[35] IVANIŠOVÁ E, KAČÁNIOVÁ M, FRANČÁKOVÁ H, PETROVÁ J, HUTKOVÁ J, BROVARSKYI V, VELYCHKO S, ADAMCHUK L, SCHUBERTOVÁ Z, MUSILOVÁ J . Bee bread-perspective source of bioactive compounds for future. Potravinarstvo, 2015,9(1):592-298.
[36] KAPLAN M, KARAOGLU Ö, EROGLU N, SILICI S . Fatty acid and proximate composition of bee bread. Food Technology and Biotechnology, 2016,54(4):497-504.
[37] 孙远东, 唐新科, 刘丽莉 . 线粒体氧自由基和衰老的研究进展. 湘潭师范学院学报 (自然科学版), 2008,30(3):36-38.
SUN Y D, TANG X K, LIU L L . Advances in mitochondrial oxygen free radicals and aging. Journal of Xiangtan Normal University (Natural Science Edition), 2008,30(3):36-38. (in Chinese)
[38] 赵凤奎, 胥保华 . 蜂花粉的抗氧化作用. 中国蜂业, 2013,64(Z2):38-43.
ZHAO F K, XU B H . The antioxidant effect in bee pollen. Apiculture of China, 2013,64(Z2):38-43. (in Chinese)
[39] 孙丽萍, 杜夏, 徐响, 董捷, 安仲姚, 杨佳林 . 薄层层析-生物自显影法筛选油菜蜂花粉中活性成分. 食品科学, 2010,31(21):69-71.
doi: 10.7506/spkx1002-6630-201021015
SUN L P, DU X, XU X, DONG J, AN Z Y, YANG J L . Using TLC-bioautography to screen active compounds in rape bee pollen. Food Science, 2010,31(21):69-71. (in Chinese)
doi: 10.7506/spkx1002-6630-201021015
[40] 石玉平, 卢挺, 王永宁 . 油菜蜂花粉中黄酮类物质清除羟基自由基的研究. 食品科学, 2004,25(11):300-302.
SHI Y P, LU T, WANG Y N . Studies on the hydroxy-group free radical eliminated of flavonoids of Elaeagnus angustifolia L. Flowrse. Food Science, 2004,25(11):300-302. (in Chinese)
[41] 彭国霞, 赵浩安, 刘清清, 张颖, 程妮, 曹炜 . 茶花粉的抗氧化活性及其对急性酒精肝损伤的保护作用. 食品科学, 2018,39(17):127-133.
PENG G X, ZHAO H A, LIU Q Q, ZHANG Y, CHENG N, CAO W . Antioxidant and hepatoprotective effects of Camellia japonica bee pollen on acute alcohol-induced liver damage in mice. Food Science, 2018,39(17):127-133. (in Chinese)
[42] ROSE-JOHN S, SCHELLER J, SCHAPER F . “Family reunion”-A structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine and Growth Factor Reviews, 2015,26(5):471-474.
[43] HUNTER C A, JONES S A . IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015,16(5):448-457.
[44] 冯馨锐, 崔雨舒, 何志涛, 崔小鹏, 王路, 潘巧燕, 齐玲 . 肿瘤坏死因子-α的生物学功能研究进展. 吉林医药学院学报, 2019,40(1):66-68.
FENG X R, CUI Y S, HE Z T, CUI X P, WANG L, PAN Q Y, QI L . Advances in biological functions of tumor necrosis factor-alpha. Journal of Jilin Medical University, 2019,40(1):66-68. (in Chinese)
[45] LIU H, WANG Z L, TIAN L Q, QIN Q H, WU X B, YAN W Y, ZENG Z J . Transcriptome difference in hypopharyngeal gland between western honeybees (Apis mellifera) and eastern honeybees(Apis cerana). BMC Genomics, 2014,15:744.
[46] 李爽, 李建科 . 蜂王浆高产蜜蜂与意大利蜜蜂工蜂上颚腺磷酸化蛋白质组分析. 中国农业科学, 2017,50(23):4656-4670.
doi: 10.3864/j.issn.0578-1752.2017.23.018
LI S, LI J K . Comparative analysis of phosphoproteome between mandibular glands of high royal jelly producing bees and Italian bees. Scientia Agricultura Sinica, 2017,50(23):4656-4670. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.23.018
[47] 张波, 吴小波, 廖春华, 何旭江, 颜伟玉, 曾志将 . 蜜蜂免移虫技术研究与应用. 中国农业科学, 2018,51(22):4387-4394.
doi: 10.3864/j.issn.0578-1752.2018.22.016
ZHANG B, WU X B, LIAO C H, HE X J, YAN W Y, ZENG Z J . Research and application of honeybee non-grafting larvae technology. Scientia Agricultura Sinica, 2018,51(22):4387-4394. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.22.016
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[7] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[8] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[9] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[12] CHEN ZhiYong, ZHANG Zhi, LIU Jie, KANG AiGuo, ZHAO SuMei, YIN XiangJie, LI ZhanQing, XIE AiTing, ZHANG YunHui. Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020 [J]. Scientia Agricultura Sinica, 2022, 55(5): 907-919.
[13] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!