Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2548-2558.doi: 10.3864/j.issn.0578-1752.2019.14.013

• RESEARCH NOTES • Previous Articles    

The Correlation Between the Stress Relaxation Characteristics and the Quality of ‘Haiwode’ Kiwifruit

LU Dan1,ZHAO WuQi1(),ZENG XiangYuan1,WU Ni1,GAO GuiTian1,ZHANG QingAn1,ZHANG BaoShan1,LEI YuShan2   

  1. 1College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119
    2Shaanxi Rural Science and Technology Development Center, Xi’an 710119
  • Received:2019-01-31 Accepted:2019-05-13 Online:2019-07-16 Published:2019-07-26
  • Contact: WuQi ZHAO E-mail:zwq65@163.com

Abstract:

【Objective】This study aimed to extract the quality properties of Haiwode kiwifruit, and to make further effort to investigate the correlation between its stress relaxation and the quality properties. In addition, a rapid analysis method was considered for quickly predicting the quality properties of kiwifruit by using the mechanical characteristics of kiwifruit.【Method】This study measured the nutrition compositions, color, texture and other indicators of the kiwifruit at the different storage periods, then the factor analysis was applied to select the real quality properties of the kiwifruit, and the model of the stress relaxation was established and the correlation analysis was conducted between the model of stress relaxation and the real quality properties of the kiwifruit. Finally, the mathematical model of stress relaxation predicting the quality features of kiwifruit was obtained by the ridge regression with a final verification. 【Result】The Maxwell model with seven components could better describe the stress relaxation of the kiwifruit, and the coefficient of determination of the fit reached 0.999. The Vc, soluble solids and ΔE had significantly positive correlation with elastic parameters and viscosity coefficients (P<0.05). Vc and E0, ΔE and E0 had a correlation coefficients of 0.901 and 0.813, respectively. The texture indexes of hardness, elasticity and cohesiveness were also highly correlated with elastic parameters and viscosity coefficients (P<0.05). The correlation coefficients between the hardness and η1, the springiness and E0 were 0.807 and 0.951, respectively. The decision coefficients of the Vc, soluble solids, ΔE, hardness (TPA), cohesion and springiness using in the prediction model were of 0.906, 0.717, 0.883, 0.709, 0.708 and 0.851, respectively. And all of them had a great statistical significance (P<0.05). The results show that the decision coefficients between the model predicted values and the measured values to the validation collection were of 0.882, 0.880, 0.869, 0.690, 0.733 and 0.814, respectively. The t-test values were all less than 2.145, indicating that there were no significant differences between the predicted values and the measured values. 【Conclusion】 The results showed that the stress features of the Haiwode kiwifruit were significantly correlated with its quality features. Thus, the mathematical model of stress relaxation constructed by the ridge regression method could accurately predict the quality features of kiwifruit, providing a theoretical basis for the evaluation of the kiwifruit quality during storage period.

Key words: Haiwode kiwifruit, stress relaxation, nutrient composition, texture, factor analysis, correlation

Table 1

Variation of quality indexes of kiwifruit"

指标
Indicator
平均值±标准差
Mean± std
变幅
Variation
极差
Range
变异系数
Coefficient of variation
可滴定酸 Titratable acid (%) 2.22±0.27 1.33—2.69 1.36 12.28
VC (mg·kg-1 FW) 47.33±15.96 23.56—85.10 61.54 33.71
可溶性固形物 Soluble solid (%) 13.26±1.04 10.3—15.30 5.00 7.83
丙二醛 MDA (μmol·g-1) 2.79±2.22 0.74—10.42 9.68 80.31
L* 34.80±3.97 25.97—45.98 20.01 11.41
a* -3.86±0.90 -5.50—-1.34 4.16 23.54
b* 5.69±3.04 0.01—11.71 11.70 53.62
ΔE 35.61±4.19 26.12—47.60 21.48 11.75
穿刺硬度Puncture Hardness 4.75±2.27 2.00—10.78 8.78 48.38
硬度Hardness (N) 463.61±239.58 67.70—1067.05 1008.35 51.68
粘附度Adhesiveness (N) -16.95±10.51 -47.08—-3.29 43.79 62.03
弹性Springiness (N·s) 0.91±0.07 0.75—1.30 0.55 7.91
黏聚性Cohesiveness 0.73±0.06 0.64—0.92 0.28 8.04
胶黏性Gumminess 342.26±186.69 62.06—775.51 713.45 55.98
咀嚼性Chewiness 309.36±173.66 58.50—757.53 699.03 56.43
回弹性Resilience 0.31±0.05 0.21—0.39 0.18 16.74

Table 2

Total variance explained of factor analysis"

成分
Factor
number
特征值
Eigen
value (λ)
方差贡献率
Variance contribution (%)
累计方差贡献率
Cumulative variance contribution (%)
1 4.412 27.576 27.576
2 3.372 21.077 48.653
3 1.794 11.214 59.867
4 1.580 9.877 69.745
5 1.227 7.670 77.414

Fig. 1

Screen plot of factor analysis"

Table 3

Matrix of kiwifruit quality with normal variance after maximum orthogonal rotational transformation"

1 2 3 4 5
硬度 Hardness (TPA) 0.984 0.055 0.002 0.04 0.008
胶黏性 Gumminess 0.976 0.044 0.122 0.077 -0.048
咀嚼性 Chewiness 0.956 0.014 0.154 0.162 -0.056
黏附度 Adhesiveness -0.547 0.159 -0.364 0.205 -0.341
ΔE -0.087 0.943 0 0.135 -0.083
b* 0.028 0.938 0.111 -0.09 0.08
L* -0.111 0.905 -0.021 0.165 -0.097
a* -0.307 -0.795 -0.019 0.146 -0.014
黏聚性 Cohesiveness -0.006 -0.087 0.882 0.088 -0.041
回弹性 Resilience 0.481 0.219 0.658 0.306 -0.118
可滴定酸 Titratable acid -0.328 -0.171 -0.553 0.2 0.14
弹性 Springiness -0.032 -0.166 0.288 0.801 0.133
穿刺硬度 Puncture Hardness 0.252 0.06 -0.304 0.669 -0.371
Vc 0.104 0.42 -0.04 0.552 -0.07
可溶性固形物 Soluble solid -0.139 -0.101 -0.293 0.069 0.804
丙二醛 MDA 0.084 0.041 0.037 -0.092 0.705

Table 4

Fitting results of stress model"

模型Models R2变幅 Range R2均值 Average 变异系数CV (%)
三元件麦克斯韦模型Maxwell one-term model 0.921—0.933 0.929 0.350
五元件麦克斯韦模型Maxwell two-term model 0.990—0.994 0.993 0.108
七元件麦克斯韦模型Maxwell three-term model 0.996—0.999 0.999 0.105

Table 5

Statistical results of strain model parameters"

参数
Parameters
建模组Modeling group 验证组 Validation group
最小值
Min
最大值
Max
平均值
Average
变异系数
CV (%)
最小值
Min
最大值
Max
平均值
Average
变异系数
CV (%)
弹性参数
Elastic component
E0 (N?mm-1) 0.524 47.239 2.543 385.477 0.913 2.434 1.451 36.695
E1 (N?mm-1) 0.206 15.768 1.422 187.43 0.386 9.287 2.449 134.776
E2 (N?mm-1) 0.151 12.966 2.001 150.036 0.294 24.122 4.061 186.875
E3 (N?mm-1) 0.252 195.190 8.895 342.308 0.276 8.096 2.597 113.66
松弛时间
Relaxation time
T1 (s) 0.201 23.696 4.716 151.317 0.1956 6.787 2.205 81.613
T2 (s) 0.188 25.060 14.009 70.921 0.145 22.688 12.670 82.392
T3 (s) 0.152 23.918 4.986 173.686 0.197 23.373 8.969 117.727
黏性系数
Viscous component
η1 (N?s?mm-1) 0.512 34.286 3.184 187.159 0.816 46.070 5.648 251.558
η2 (N?s?mm-1) 0.294 273.466 13.301 322.597 0.849 13.459 5.841 73.9552
η3 (N?s?mm-1) 0.422 39.963 3.692 180.578 0.912 12.300 3.995 100.241

Table 6

Correlation analysis of the parameters for strain model"

参数 Parameters E0 E1 E2 E3 T1 T2 T3 η1 η2 η3
E0 1
E1 0.728** 1
E2 0.355* 0.131 1
E3 0.993** 0.689** 0.303* 1
T1 -0.29 -0.179 0.093 -0.049 1
T2 0.107 0.084 -0.510** 0.179 -0.494** 1
T3 -0.095 0.063 0.520** -0.166 -0.168 -0.753** 1
η1 0.541** 0.581** 0.180 0.523** 0.356* -0.226 0.058 1
η2 0.983** 0.707** 0.310* 0.985** -0.094 0.211 -0.165 0.501** 1
η3 0.998** 0.730** 0.353* 0.991** -0.044 0.109 -0.091 0.545** 0.983** 1

Table 7

Analysis of correlation of stress parameters and various indexes"

指标Index E0 E1 E2 E3 T1 T2 T3 η1 η2 η3
Vc Vitamin C 0.901** 0.349* 0.464** 0.581** 0.09 0.192 -0.323* 0.617** 0.425** 0.518**
可溶性固形物 Soluble solid 0.757** 0.422** 0.333* 0.504** 0.148 0.24 -0.291* 0.607** 0.326* 0.47**
ΔE 0.813** 0.313* 0.321* 0.446** 0.048 0.154 -0.216 0.512** 0.32* 0.351*
硬度 Hardness 0.543** 0.189 0.407** 0.401** 0.439** -0.032 -0.248 0.807** 0.101 0.564**
黏聚性 Cohesiveness 0.512** 0.159 0.577** 0.065 0.187 -0.089 0.216 0.479** -0.065 0.199
弹性 Springiness 0.951** 0.244 0.466** 0.75** 0.269 0.234 -0.468** 0.683** 0.42** 0.589**

Table 8

Ridge regression analysis of stress parameters and indices"

指标Index 决定系数R2 显著性Sig 预测模型 Predictive equation
VC Vitamin C 0.906 <0.001 Y=-5.853+12.105E0+1.393E1+0.464E2+0.381E3+1.707T1+1.365T2+1.176T3-0.364η2-0.0642η3
可溶性固形物
Soluble solid
0.717 0.0243 Y=10.966+0.306E0+0.191E1+0.00463E2+0.0871E3+0.114T1+0.0475T2+0.0496T3-0.0464η1-0.00332η2
ΔE 0.883 0.0108 Y=19.349+1.101E0+0.269E1-0.0894E3+0.830T1+0.670T2+0.552T3-0.296η1-0.0728η2
硬度Hardness 0.709 <0.001 Y=-195.311-1.959E0-2.901E2+36.299T1+23.201T2+23.754T3+11.510η1+1.635η2
黏聚性Cohesiveness 0.708 <0.001 Y=0.565+0.0205E0+0.00358E1+0.00725T1+0.00455T2+0.00613T3-0.000599η1+0.000924η2-0.000108η3
弹性Springiness 0.851 <0.001 Y=0.882+0.0202E0-0.00332E1+0.000151E2-0.000479T3+0.000437η1+0.000362η2-0.0000633η3

Table 9

Results of prediction model for quality indexes of kiwifruit"

预测值-实测值
Predicted value-measured value
组间差异 Paired differences t检验值
t-test
自由度
df
平均值Average 标准差Std. deviation 标准误Std. error mean
Vc Vitamin C 5.011 6.579 1.367 1.950 14
可溶性固形物Soluble solid 0.194 0.399 0.103 1.887 14
ΔE 0.298 1.904 0.492 0.606 14
硬度Hardness 77.377 75.813 19.575 1.953 14
黏聚性Cohesiveness 0.00933 0.0494 0.127 0.733 14
弹性Springiness 0.0287 0.0708 0.0183 1.568 14

Fig. 2

Relationship between predicted values and measured values about the quality features of kiwifruit"

[1] 杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉 . 超高压杀菌处理冷破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377.
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R . Optimization of ultra-high pressure sterilization conditions on the kiwi fruit pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese)
[2] 赵金梅, 高贵田, 薛敏, 耿鹏飞, 孙翔宇, 谷留杰, 雷玉山 . 不同品种猕猴桃果实的品质及抗氧化活性. 食品科学, 2014,35(9):118-122.
doi: 10.7506/spkx1002-6630-201409024
ZHAO J M, GAO G T, XUE M, GENG P F, SUN X Y, GU L J, LEI Y S . Quality and antioxidant activity of different kiwi fruit varieties. Scientia Agricultura Sinica, 2014,35(9):118-122. (in Chinese)
doi: 10.7506/spkx1002-6630-201409024
[3] RYSZARD M, MAREK M, TOMASZ D, PIOTR Z, PIOTR S . Non-linear stress relaxation model as a tool for evaluating the viscoelastic properties of meat products. Journal of Food Engineering, 2015,146:107-115.
doi: 10.1016/j.jfoodeng.2014.09.006
[4] SILVINA C A, NOEMÍ E Z, ALICIA N C . Stress relaxation characteristics of low-fat chicken sausages made in Argentina. Meat Science, 2008,79:589-594.
doi: 10.1016/j.meatsci.2007.12.013
[5] 聂毓琴, 马洪顺, 韩志武 . 薇菜压缩应力松弛与蠕变力学特性研究. 农业机械学报, 2005(4):89-91.
NIE Y Q, MA H S, HAN Z W . Research on stress relaxation and creep mechanics behaviors ofOsmunda cinnamomea. Transaction of the Chinese Society for Agricultural Machinery, 2005(4):89-91. (in Chinese)
[6] ZHAO W Q, FANG Y, ZHANG Q A, GUO Y R, GAO G T, YI X . Correlation analysis between chemical or texture attributes and stress relaxation properties of ‘Fuji’ apple. Postharvest Biology and Technology, 2017,129.
[7] 王海鸥, 胡志超, 谢焕雄, 姜松 . 猕猴桃压缩—应力松弛的试验. 农机化研究, 2006(5):144-146.
WANG H O, HU Z C, XIE H X, JIANG S . Experimental study on kiwi fruit’s stress-relaxation property.Journal of Agricultural Mechanization Research, 2006(5):144-146. (in Chinese)
[8] 计宏伟, 邵文全, 孟宪文 . 猕猴桃压缩力学行为及蠕变特性的试验研究. 安徽农业科学, 2010,38(3):1107-1109, 1121.
JI H W, SHAO W Q, MENG X W . Experimental research on compression mechanical behaviors and creep property of kiwi fruit. Journal of Anhui Agricultural Sciences, 2010,38(3):1107-1109, 1121. (in Chinese)
[9] 李里特 . 食品物性学. 北京: 中国农业出版社, 2003: 235-241.
LI L T. Physical Properties of Foods. Beijing: China Agriculture Press, 2003: 235-241. (in Chinese)
[10] 吕健, 刘璇, 毕金峰, 周林燕, 吴昕烨 . 桃变温压差膨化脆片品质评价研究. 中国农业科学, 2016,49(4):802-812.
LÜ J, LIU X, BI J F, ZHOU L Y, WU X Y . Research on the quality evaluation for peach and nectarine chips by explosion puffing drying. Scientia Agricultura Sinica, 2016,49(4):802-812. (in Chinese)
[11] 张唐伟, 贺继峰, 余耀斌, 次顿 . 岗巴羊羊肉营养品质及其因子分析. 食品工业科技, 2018,39(8):279-284.
ZHANG T W, HE J F, YU Y B, CI D . Mutton quality and its factor analysis of Gangba sheep. Science and Technology of Food Industry, 2018,39(8):279-284. (in Chinese)
[12] 杨梅, 肖静, 蔡辉 . 多元分析中的多重共线性及其处理方法. 中国卫生统计, 2012,29(4):620-624.
YANG M, XIAO J, CAI H . Multicollinearity in multivariate analysis and its processing methods. Chinese Journal of Health Statistics, 2012,29(4):620-624. (in Chinese)
[13] 王锐 . 岭回归分析在解决经济数据共线性问题中的应用. 经济研究导刊, 2018(22):144-147.
WANG R . The Application of ridge regression in solving the problem of collinearity of economic data.Economic Research Guide, 2018(22):144-147.(in Chinese)
[14] 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧 . 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010,43(12):2491-2499.
MANG Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X . Factors analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. Dongzao) advanced selections. Scientia Agricultura Sinica, 2010,43(12):2491-2499. (in Chinese)
[15] 曾凡杰, 孟莉, 吕远平 . 不同前处理和冻结方式对猕猴桃片干制品品质的影响. 食品科技, 2017,42(8):63-68.
ZENG F J, MENG L, LÜ Y P . Effect of different pre-processing and freezing methods on the dry products quality of kiwi fruit slices. Food technology, 2017,42(8):63-68. (in Chinese)
[16] 吴旻丹, 陈瑜, 金邦荃 . 储藏期猕猴桃质构变化的研究及人工咀嚼的建立. 食品工业科技, 2010,31(12):146-148, 152.
WU M D, CHEN Y, JIN B Q . Detection of texture properties of kiwi fruit by texture profile analysis and simulation of manual chewing. Science and Technology of Food Industry, 2010,31(12):146-148,152. (in Chinese)
[17] 宋小青, 任亚梅, 张艳宜 . 电子鼻对低温贮藏猕猴桃品质的预测. 食品科学, 2014,35(20):230-235.
doi: 10.7506/spkx1002-6630-201420046
SONG X Q, REN Y M, ZHANG Y Y . Prediction of kiwi fruit quality during cold storage by electronic nose. Food Science, 2014,35(20):230-235. (in Chinese)
doi: 10.7506/spkx1002-6630-201420046
[18] 许永亮, 熊善柏, 赵思明 . 蒸煮工艺和化学成分对米饭应力松弛特性的影响. 农业工程学报, 2007(10):235-240.
XU Y L, XIONG S B, ZHAO S M . Effect of cooking technology and chemical components on stress-relaxation property of cooked rice. Transactions of the CSAE, 2007, 23(10):235-240. ( in Chinese)
[19] HASSAN B H, ALHAMDAN A M, ELANSARI A M . Stress relaxation of dates at khalal. Journal of Food Engineering, 2005,66(4):439-445.
doi: 10.1016/j.jfoodeng.2004.04.014
[20] BARGALE P C, IRUDAYARAJ J M, MARQUIS B . Some mechanical- properties and stress-relaxation characteristics of lentils. Canadian Agricultural Engineering, 1994,36(4):247-254.
[21] 方媛 . 苹果的应力松弛和蠕变特性与其品质相关性分析[D]. 杨凌:陕西师范大学, 2016.
FANG Y . Correlation analysis between the stress-relaxation or creep properties and quality attributes of apple[D]. Yangling: Shaanxi Normal University, 2016. ( in Chinese)
[22] 侯成杰, 齐沙沙, 张长峰 . TiO2光催化除乙烯及在猕猴桃保鲜中的应用研究. 食品工业, 2018,39(4):134-137.
HOU C J, QI S S, ZHANG C F . Study on applications of TiO2 photocatalysis to ethylene removal and preservation on kiwi fruit. The Food Industry, 2018,39(4):134-137. (in Chinese)
[23] 陆秋君, 王俊, 何喜玲 . 常温贮藏中番茄应力松弛特性试验. 农业机械学报, 2005(7):77-80, 88.
LU Q J, WANG J, HE X L . Experimental study on intact tomato's stress-relaxation during storing at normal temperature.Transactions of the Chinese Society for Agricultural, 2005(7):77-80, 88. (in Chinese)
[24] KAUR L, SINGH N, SINGH S, NAVDEEP, SINGH G, HARDEEP . Some properties of potatoes and their starches I. Cooking, textural and rheological properties of potatoes. Food Chemistry, 2002,79(2):177-181.
doi: 10.1016/S0308-8146(02)00129-2
[1] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[2] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[3] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[6] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[7] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[8] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[9] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[10] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[11] WANG Yang,WANG WenHui,TONG Wei,JIA XiaoHui,DU YanMin. Quality Analysis of Frozen Pear Based on Color, Aroma, Taste and Texture [J]. Scientia Agricultura Sinica, 2021, 54(9): 1981-1992.
[12] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[13] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[14] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[15] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!