Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (13): 2230-2242.doi: 10.3864/j.issn.0578-1752.2019.13.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa

SUN YanMei,ZHANG QianBing(),MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui()   

  1. College of Animal Science & Technology, Shihezi University, Shihezi 832003, Xinjiang
  • Received:2019-01-29 Accepted:2019-04-08 Online:2019-07-01 Published:2019-07-11
  • Contact: QianBing ZHANG,ChunHui MA E-mail:qbz102@163.com;chunhuima@126.com

Abstract:

【Objective】 Phosphorus-solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) play an important role in promoting nutrient uptake and increasing yield of crop. In order to explore the effects of PSB and AMF on growth and root biomass of alfalfa and to clarify the interaction between PSB and AMF, the mechanism of their effects on alfalfa growth were studied, so as to provide theoretical basis for alfalfa artificial cultivation and the development of high-efficiency compound microbial fertilizer. 【Method】 Single factor randomized block design was used in the experiment, and four kinds of bacteria were selected, including Bacillus megaterium (Bm) and Bacillus subtilis (Bs) with high phosphorus-solubilizing ability, and Funneliformis mosseae (Fm) and Glomus etunicatum (Ge), which could coexist with alfalfa roots, and the two types of bacteria were double inoculated with BmBs, BmFm, BmGe, BsFm, BsGe, FmGe, and adding inactivated bacteria as a control (CK), respectively. A total of 11 treatments.. After inoculation of the bacteria, the hay yield, plant height, stem diameter, crude protein concentration, neutral detergent fiber, acid detergent fiber, phosphorus concentration, taproot length, root biomass of alfalfa were determined, and pH value, total phosphorus, available phosphorus concentration of soil were also analyzed. Then, the effects of single and double inoculation on alfalfa were evaluated by membership function analysis. 【Result】 The above-ground biomass, plant height, stem diameter, crude protein concentration, phosphorus concentration, taproot length, under-ground biomass, soil available phosphorus under inoculated bacteria treatments were significantly higher than that under CK (P<0.05), while neutral detergent fiber and acid detergent fiber of alfalfa, pH value and total phosphorus concentration under soil inoculated bacteria treatments were significantly lower than that under CK (P<0.05). Comparisons between inoculated bacteria and CK, above-ground biomass, plant height and stem diameter of alfalfa increased by 18.57%-24.49%, 8.59%-21.33% and 3.86%-9.54% under PSB in Bm and Bs treatments, respectively, and increased by 9.15%-27.35%, 2.51%-18.60 and 4.59%-8.58% under AMF in Fm and Ge treatments, respectively; BmBs, BmFm, BmGe, BsFm, BsGe, and FmGe treatments increased them by 7.66%-41.62%, 7.44%-34.56% and 5.58%-26.61%, respectively. The taproot length of alfalfa in single inoculated Fm and Ge treatments were significantly longer than those treated with Bm and Bs (P<0.05), but the differences between Fm and Ge, Bm and Bs treatments were not significant (P>0.05); Under the mixed inoculation treatments, the FmGe was the largest and significantly larger than that under other inoculation treatments in the taproot length of alfalfa (P<0.05); BmBs treatments was the weakest. The correlation analysis showed that there was no significant negative correlation between acid detergent fiber concentration and stem diameter (P>0.05); The under-ground biomass had no significant positive correlation with alfalfa phosphorus (P>0.05), and no significant negative correlation with soil total phosphorus (P>0.05). The comprehensive assessment various indicator of alfalfa by a membership function analysis showed that BmFm>BmGe>FmGe, which were the top three treatments for alfalfa production performance. 【Conclusion】 The effect of simultaneous inoculation of PSB and AMF on alfalfa plant growth and phosphorus nutrition was better than that of single inoculation of PSB or AMF, and the effect was related to the types of PSB and AMF. Considering the growth status, plant phosphorus nutrition and underground biomass of alfalfa, the effect of simultaneous inoculation of phosphorus-solubilizing bacteria was Bacillus megaterium (Bm) and arbuscular mycorrhizal fungus was Funneliformis mosseae (Fm) on alfalfa growth and phosphorus nutrition were well improved, and the next was BmGe treatments.

Key words: alfalfa, phosphate-solubilizing bacteria, arbuscular mycorrhizal fungi (AMF), growth, nutritional quality

Table 1

The under-ground biomass and soil phosphorus concentration of alfalfa under different bacterial treatments"

处理
Treatment
主根长
Taproot length
(cm)
地下生物量
Under-ground biomass (g/pot)
pH
土壤全磷
Total phosphorus in soil (g·kg-1)
土壤速效磷
Available phosphorus in soil (mg·kg-1)
CK 28.87±0.36g 6.07±0.05k 7.63±0.13a 1.142±0.063a 20.95±0.14h
Bm 33.43±0.25f 10.86±0.13h 7.33±0.02cde 0.904±0.016fgh 28.63±0.37d
Bs 32.21±0.22f 9.27±0.06f 7.44±0.07bc 0.964±0.017def 25.25±0.26f
Fm 34.94±0.34e 14.93±0.14g 7.40±0.04bcd 1.073±0.047bc 27.56±0.31e
Ge 33.92±0.21e 13.87±0.15i 7.49±0.05b 1.021±0.020cd 25.55±0.24f
BmBs 31.94±0.42f 12.14±0.09i 7.41±0.11bc 1.094±0.019ab 23.37±0.22ab
BmFm 39.07±0.47b 19.07±0.19b 7.15±0.12f 0.836±0.018h 31.19±0.38a
BmGe 38.72±0.28b 17.33±0.11d 7.24±0.06ef 0.872±0.025gh 30.74±0.35ab
BsFm 36.14±0.12c 17.67±0.05c 7.34±0.05cde 0.926±0.022efg 30.42±0.29bc
BsGe 35.45±0.23d 16.04±0.13e 7.21±0.07ef 0.943±0.054ef 30.04±0.48c
FmGe 39.83±0.27a 20.94±0.18a 7.26±0.03def 0.977±0.060de 28.71±0.31d

Table 2

The growth of alfalfa under different bacterial treatments"

处理
Treatment
地上生物量 Above-ground biomass (g/pot) 株高 Plant height (cm) 茎粗 Stem diameter (mm)
第1茬 First cut 第2茬 Second cut 第1茬 First cut 第2茬 Second cut 第1茬 First cut 第2茬 Second cut
CK 18.47±0.02i 13.31±0.08i 37.41±0.53i 32.26±0.42g 2.83±0.09h 2.44±0.03h
Bm 22.23±0.15e 16.57±0.17e 45.39±0.45d 36.91±0.49c 3.1±0.03ef 2.65±0.06def
Bs 21.90±0.21f 15.93±0.04f 43.25±0.26f 35.03±0.35de 3.01±0.02fg 2.52±0.05gh
Fm 21.74±0.05f 16.95±0.09d 44.37±0.82e 34.42±0.41e 3.15±0.03de 2.68±0.06de
Ge 20.16±0.24h 14.92±0.19g 42.21±0.38g 33.07±0.36f 2.96±0.05g 2.63±0.07def
BmBs 20.83±0.18g 14.33±0.22h 40.32±0.32h 34.66±0.25e 3.06±0.02ef 2.56±0.09fg
BmFm 25.31±0.11a 18.85±0.15a 50.34±0.39a 42.91±0.38a 3.32±0.05b 2.82±0.05b
BmGe 25.03±0.18a 18.07±0.25b 48.67±0.34b 36.75±0.24c 3.29±0.06bc 2.79±0.04bc
BsFm 23.76±0.21c 17.55±0.13c 46.42±0.51c 35.65±0.43d 3.28±0.07bc 2.74±0.03bcd
BsGe 23.28±0.18d 16.15±0.07f 45.63±0.35d 35.38±0.32d 3.22±0.04cd 2.71±0.09cde
FmGe 24.7±0.14b 18.20±0.14b 49.70±0.27a 40.08±0.34b 3.43±0.06a 3.05±0.02a

Table 3

The nutrition quality of alfalfa under different bacterial treatments"

处理
Treatment
粗蛋白
Crude protein (%)
中性洗涤纤维
Neutral detergent fiber (%)
酸性洗涤纤维
Acid detergent fiber (%)
苜蓿磷
Phosphorus concentration in alfalfa (%)
第1茬
First cut
第2茬
Second cut
第1茬
First cut
第2茬
Second cut
第1茬
First cut
第2茬
Second cut
第1茬
First cut
第2茬
Second cut
CK 16.45±0.21h 17.58±0.11h 40.98±0.31a 41.78±0.53a 32.63±0.33a 32.98±0.44a 0.242±0.008f 0.223±0.002f
Bm 18.63±0.47cd 19.45±0.28bc 37.59±0.39de 40.40±0.49c 28.32±0.29f 28.52±0.33fg 0.294±0.009bc 0.255±0.008c
Bs 18.57±0.22cde 18.87±0.04ef 38.03±0.48d 41.28±0.38ab 29.56±0.33cd 29.63±0.46d 0.277±0.016cde 0.248±0.003cd
Fm 18.35±0.09def 19.05±0.14de 38.96±0.39bc 38.78±0.37e 28.87±0.36e 29.73±0.22d 0.266±0.022de 0.233±0.008ef
Ge 18.22±0.18bc 18.54±0.22fg 39.49±0.23b 41.65±0.28a 29.19±0.41de 30.88±0.26c 0.252±0.012ef 0.229±0.002ed
BmBs 17.94±0.23g 18.39±0.17g 38.88±0.47bc 41.62±0.26a 30.73±0.25b 31.94±0.31b 0.255±0.018ef 0.236±0.004e
BmFm 19.41±0.15a 19.99±0.26a 35.61±0.36g 37.87±0.28f 26.01±0.21i 27.14±0.32h 0.324±0.012a 0.288±0.007a
BmGe 19.13±0.21ab 19.72±0.24ab 36.81±0.32f 39.43±0.23d 27.75±0.22g 28.26±0.06g 0.303±0.016ab 0.269±0.005b
BsFm 18.79±0.16bc 19.35±0.15bcd 37.14±0.16ef 39.61±0.27d 26.65±0.34h 29.03±0.31ef 0.291±0.002bcd 0.253±0.009cd
BsGe 18.05±0.14fg 18.82±0.28df 38.67±0.35c 41.47±0.34ab 28.98±0.27e 29.46±0.38de 0.286±0.017bcd 0.247±0.009cd
FmGe 18.46±0.08cde 19.20±0.25cde 36.77±0.19f 40.88±0.33bc 29.89±0.38c 30.81±0.25c 0.290±0.007bcd 0.239±0.006de

Table 4

The correlation analysis of each index of alfalfa under different bacterial treatments"

指标
Index
主根长Taproot 地下生物量Under-ground
biomass
pH 全磷
Total phosphorus
速效磷Available phosphorus 地上生物量
Above-ground biomass
株高
Plant height
茎粗
Stem
粗蛋白
Crude
protein
中性洗
涤纤维
Neutral
detergent fiber
酸性洗
涤纤维
Acid detergent fiber
地下生物量Under-ground biomass 0.957**
pH -0.857** -0.807**
全磷
Total phosphorus
-0.714* -0.576 0.822**
速效磷
Available phosphorus
0.863** 0.811** -0.903** -0.874**
地上生物量Above-ground biomass 0.939** 0.856** -0.906** -0.840** 0.923**
株高
Plant height
0.918** 0.825** -0.900** -0.821** 0.847** 0.956**
茎粗
Stem
0.958** 0.947** -0.840** -0.620* 0.814** 0.910** 0.897**
粗蛋白
Crude protein
0.807** 0.705* -0.820** -0.886** 0.877** 0.902** 0.859** 0.715*
中性洗涤纤维
Neutral detergent fiber
-0.808** -0.713* 0.790** 0.796** -0.829** -0.914** -0.895** -0.741** -0.923**
酸性洗涤纤维
Acid detergent fiber
-0.692* -0.607* 0.776** 0.905** -0.900** -0.822** -0.762** -0.576 -0.934** 0.883**
苜蓿磷
Phosphorus concentration in alfalfa
0.719* 0.570 -0.847** -0.936** 0.824** 0.874** 0.882** 0.642* 0.875** -0.900** -0.877**

Table 5

Comprehensive evaluation of various indicators of alfalfa under different bacterial treatments"

指标Index CK Bm Bs Fm Ge BmBs BmFm BmGe BsFm BsGe FmGe
主根长Taproot 0.000 0.415 0.304 0.552 0.460 0.280 0.927 0.896 0.661 0.599 1.000
地下生物量Under-ground biomass 0.000 0.323 0.216 0.596 0.525 0.409 0.874 0.757 0.780 0.671 1.000
pH 0.000 0.625 0.396 0.479 0.292 0.458 1.000 0.813 0.604 0.875 0.771
全磷Total phosphorus 0.000 0.775 0.580 0.225 0.394 0.156 1.000 0.879 0.704 0.648 0.537
速效磷Available phosphorus 0.000 0.750 0.420 0.646 0.449 0.236 1.000 0.956 0.925 0.888 0.758
地上生物量Above-ground biomass 0.000 0.567 0.489 0.559 0.267 0.274 1.000 0.914 0.770 0.618 0.898
株高Plant height 0.000 0.536 0.365 0.387 0.238 0.225 1.000 0.668 0.526 0.481 0.853
茎粗Stem 0.008 0.402 0.221 0.467 0.270 0.295 0.721 0.672 0.623 0.549 1.000
粗蛋白Crude protein 0.000 0.755 0.636 0.628 0.509 0.429 1.000 0.898 0.766 0.530 0.677
中性洗涤纤维Neutral detergent fiber 0.000 0.514 0.372 0.541 0.175 0.244 1.000 0.703 0.648 0.282 0.551
酸性洗涤纤维Acid detergent fiber 0.000 0.704 0.515 0.563 0.445 0.236 1.000 0.770 0.797 0.575 0.394
苜蓿磷Phosphorus concentration in alfalfa 0.000 0.571 0.408 0.231 0.109 0.177 1.000 0.728 0.537 0.463 0.435
平均值Average 0.001 0.578 0.410 0.489 0.344 0.285 0.960 0.805 0.695 0.598 0.739
排序Rank 11 6 8 7 9 10 1 2 4 5 3
[1] 张前兵, 于磊, 鲁为华, 马春晖, 和海秀 . 优化灌溉制度提高苜蓿种植当年产量及品质. 农业工程学报, 2016,32(23):116-122.
ZHANG Q B, YU L, LU W H, MA C H, HE H X . Optimal irrigation regime improving yield and quality of alfalfa in year of sowing. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(23):116-122.(in Chinese)
[2] 苏亚丽, 张力君, 孙启忠, 乌艳红, 杨秀芳, 吕宁 . 水肥耦合对敖汉苜蓿营养成分的影响. 草地学报, 2011,19(5):821-824.
SU Y L, ZHANG L J, SUN Q Z, WU Y H, YANG X F, LÜ N . Effects of variable water and nutrient regimes on nutrients of alfalfa. Acta Agrestia Sinica, 2011,19(5):821-824. (in Chinese)
[3] 赵小蓉, 林启美, 孙焱鑫, 张有山, 张美庆 . 玉米根际与非根际解磷细菌的分布特点. 生态学杂志, 2001,20(6):62-64.
ZHAO X R, LIN Q M, SUN Y X, ZHANG Y S, ZHANG M Q . Phosphobacteria distribution in rhizophere and nonrhizosphere soil of corn. Chinese Journal of Ecology, 2001,20(6):62-64. (in Chinese)
[4] 王誉瑶, 韦中, 徐阳春, 沈其荣 . 溶磷菌株组合的溶磷效应及对玉米生长的影响. 植物营养与肥料学报, 2017,23(1):262-268.
WANG Y Y, WEI Z, XU C Y, SHEN Q R . Dissolving capacity of phosphate dissolving bacteria strains combination and their effects on corn growth. Journal of Plant Nutrition and Fertilizer, 2017,23(1):262-268. (in Chinese)
[5] RODRIGUEZ H, FRAGA R . Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999,17(4/5):319-339.
doi: 10.1016/S0734-9750(99)00014-2
[6] 李海云, 姚拓, 张榕, 张洁, 李智燕, 荣良燕, 路晓雯, 杨晓蕾, 夏东慧, 罗慧琴 . 红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究. 草业学报, 2018,27(12):113-121.
LI H Y, YAO T, ZHANG R, ZHANG J, LI Z Y, RONG L Y, LU X W, YANG X L, XIA D H, LUO H Q . Relationship between organic acids secreted from rhizosphere phosphate-solubilizing bacteria in Trifolium pratense and phosphate-solubilizing ability. Acta Prataculturae Sinica, 2018,27(12):113-121.(in Chinese)
[7] 韩华雯, 孙丽娜, 姚拓, 荣良燕, 刘青海, 卢虎, 马晖玲 . 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013,22(5):104-112.
doi: 10.11686/cyxb20130512
HAN H W, SUN L N, YAO T, RONG L Y, LIU Q H, LU H, MA H L . Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013,22(5):104-112.(in Chinese)
doi: 10.11686/cyxb20130512
[8] 韩光, 张磊, 邱勤, 石杰, 胡正峰 . 复合型PGPR和苜蓿对新垦地土壤培肥效果研究. 土壤学报, 2011,48(2):405-411.
HAN G, ZHANG L, QIU Q, SHI J, HU Z F . Effects of PGPR and alfalfa on soil building of newly-reclaimed land. Acta Pedologica Sinica, 2011,48(2):405-411.(in Chinese)
[9] 李玉娥, 姚拓, 荣良燕 . 溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响. 草地学报, 2010,18(1):84-88.
LI Y E, YAO T, RONG L Y . Characteristics of IAA secretion and phosphate dissolving of phosphate-solubilizing bacteria and its effect on alfalfa growth. Acta Agrestia Sinica, 2010,18(1):84-88.(in Chinese)
[10] THAKUR D, KAUSHAL R, SHYAM V . Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-A review. Agricultural Reviews, 2014,35(3):159.
doi: 10.5958/0976-0741.2014.00903.9
[11] 张维娜, 孙梅, 陈秋红, 施大林, 匡群 . 巨大芽孢杆菌JD-2的解磷效果及对土壤有效磷化的研究. 吉林农业科学, 2012,37(5):38-41.
ZHANG W N, SUN M, CHEN Q H, SHI D L, KUANG Q . Studies on the effect of Bucillus megaterium JD-2 in dissolving P and soil available phosphorus. Journal of Jilin Agricultural Sciences, 2012,37(5):38-41.(in Chinese)
[12] 王琰 . 解磷芽孢杆菌的筛选鉴定及其对玉米促生机理的研究[D]. 广州: 华南农业大学, 2016.
WANG Y . Study on isolation of phosphate-solubilizing bacillus and their impact of growth-promoting for maize[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[13] 柳艳艳, 骆洪义, 王凤忠, 周波, 韩明渠, 王芳 . 巨大芽孢杆菌(BM002)生物有机肥对油菜生长发育的影响. 山东农业科学, 2012,44(7):63-66.
LIU Y Y, LUO H Y, WANG F Z, ZHOU B, HAN M Q, WANG F . Effect of Bacillus megaterium (BM002) microbial organic fertilizer on growth and development of rape. Shandong Agricultural Sciences, 2012,44(7):63-66.(in Chinese)
[14] XU Z Y, BAN Y H, JIANG Y H, ZHANG X L, LIU X Y . Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review. Pedosphere, 2016,26(5):592-617.
doi: 10.1016/S1002-0160(15)60067-4
[15] 舒波, 李伟才, 刘丽琴, 魏永赞, 石胜友 . 丛枝菌根(AM)真菌与共生植物物质交换研究进展. 植物营养与肥料学报, 2016,22(4):1111-1117.
SHU B, LI W C, LIU L Q, WEI Y Z, SHI S Y . Progress on material exchange between arbuscular mycorrhizal(AM) fungi and host plant: A review. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1111-1117.(in Chinese)
[16] 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊 . 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018,51(17):3315-3324.
WANG Q F, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J . Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in Mollisols of Northeast China. Scientia Agricultura Sinica, 2018,51(17):3315-3324.(in Chinese)
[17] WILLMANN M, GERLACH, BUER B, POLATAJKO A, NAGY R, KOEBKE E, JANSA J, FLISCH R, BUCHER M . Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013,26(4):523.
[18] 宋圆圆, 夏明, 林熠斌, 林娴慧, 丁朝晖, 王杰, 胡林, 曾任森 . 丛枝菌根真菌摩西管柄囊霉侵染增强番茄对机械损伤的响应. 应用生态报, 2018,29(11):3811-3818.
SONG Y Y, XIA M, LIN Y B, LIN X H, DING C H, WANG J, HU L, ZENG R S . Colonization with arbuscular mycorrhizal fungus Funneliformis mosseae enhanced the responses of tomato plants to mechanical wounding. Chinese Journal of Applied Ecology, 2018,29(11):3811-3818.(in Chinese)
[19] 郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日 . 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响. 中国农业科学, 2018,51(24):4677-4689.
GOU J, LUO P Y, YANG J F, LI D D, HUANG Y Y, HAN X R . Influence of long-term fertilization on community structures and colonization of arbuscular mycorrhizal fungi in a brown soil. Scientia Agricultura Sinica, 2018,51(24):4677-4689.(in Chinese)
[20] SMITH S E, SMITH F A . Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011,62(1):227-250.
doi: 10.1146/annurev-arplant-042110-103846
[21] LIU C, RAVNSKOV S, LIU F, RUBAEK G H, ANDERSEN M N . Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. The Journal of Agricultural Science, 2018,156(1):46-48.
doi: 10.1017/S0021859618000023
[22] GIOVANNETTI M, SBRANA C, AVIO L, STRANI P . Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytologist, 2004,164(1):175-181.
doi: 10.1111/j.1469-8137.2004.01145.x
[23] MORTIMER P E, PEREZFERNANDEZ M A, VALENTINE A J . The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology & Biochemistry, 2008,40(5):1019-1027.
[24] 任爱天, 鲁为华, 杨洁晶, 刘红玲, 马春晖 . 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响. 中国草地学报, 2014,36(6):72-78.
REN A T, LU W H, YANG J J, LIU H L, MA C H . Effects of arbuscular mycorrhizal fungi (AMF) on growth of alfalfa and phosphorus utilization under different P levels. Chinese Journal of Grassland, 2014,36(6):72-78.(in Chinese)
[25] 黎绍鹏, 林哲, 李德智, 陈保瑜, 叶少萍, 辛国荣 . 多花黑麦草根际土壤丛枝菌根真菌对早稻生长的影响. 生态科学, 2010,29(5):411-416.
LI S P, LIN Z, LI D Z, CHEN B Y, YE S P, XIN G R . Effects of arbuscular mycorrhizal fungi in the rhizosphere of Italian ryegrass on succeeding rice growth. Ecological Science, 2010,29(5):411-416.(in Chinese)
[26] 甄莉娜, 王润梅, 杨俊霞, 李侠, 张英俊 . 丛枝菌根真菌与氮肥对羊草生长的影响. 中国草地学报, 2018,40(3):49-54.
ZHEN L N, WANG R M, YANG J X, LI X, ZHANG Y J . Effects of arbuscular mycorrhizal fungi and nitrogen fertilizer on the growth of Leymus chinensis. Chinese Journal of Grassland, 2018,40(3):49-54. (in Chinese)
[27] ZIANE H, MEDDAD-HAMZA A, BEDDIAR A, GIANINAZZI S . Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. International Journal of Agriculture and Biology, 2017,19(2):341-347.
doi: 10.17957/IJAB
[28] 秦芳玲, 田中民 . 同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响. 西北农林科技大学学报(自然科学版), 2009,37(6):151-157.
QIN F L, TIAN Z M . Effect of co-inoculation with arbuscular mycorrhizal fungi and four different phosphate-solubilizing bacteria on nutrients uptake of red clover in a low phosphorus soil. Journal of Northwest A & F University (Natural Science Edition.), 2009,37(6):151-157.(in Chinese)
[29] MUTHUKUMAR T, UDAIYAN K, RAJESHKANNAN V . Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen- fixing bacteria under tropical nursery conditions. Biology and Fertility of Soils, 2001,34(6):417-426.
[30] ZHANG L, DING X, CHEN S, HE X, ZHANG F, FENG G . Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 2014,9(1):850-856.
doi: 10.1080/17429145.2014.977831
[31] BABANA A H, ANTOUN H . Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant & Soil, 2006,287(1/2):51-58.
[32] ZHANG L, FAN J Q, DING X D, HE X H, ZHANG F S, FENG G . Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology & Biochemistry, 2014,74(1/7):177-183.
[33] ZAIDI A . Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture, 2007,47(8):1016-1022.
doi: 10.1071/EA06046
[34] JORQUERA M A, HERNANDEZ M T, RENGEL Z, MARSCHNER P, MORA M L . Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 2008,44(8):1025-1034.
doi: 10.1007/s00374-008-0288-0
[35] VAN SOEST P J, ROBERTSON J B, LEWIS B A . Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2
[36] FAN J W, DU Y L, WANG B R, TURNER N C, WANG T, ABBOTT L K, STEFANOVA K , SIDDIQUE K H M, LI F M . Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research, 2016,198(11):247-257.
doi: 10.1016/j.fcr.2016.08.014
[37] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agricultural Chemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[38] 张凡凡, 和海秀, 于磊, 鲁为华, 张前兵, 马春晖 . 天山西部高山区夏季放牧草地4种重要牧草营养品质评价. 草业学报, 2017,26(8):207-215.
ZHANG F F, HE H X, YU L, LU W H, ZHANG Q B, MA C H . Nutritional quality of four important herbage species in summer grazing grassland in the alpine zone, west Tianshan Mountain. Acta Prataculturae Sinica, 2017,26(8):207-215. (in Chinese)
[39] ABEL S, TICCONI C A, DELATORRE C A . Phosphate sensing in higher plant. Physiologia Plantarum, 2010,115(1):1-8.
[40] 张凡凡, 于磊, 马春晖, 张前兵, 鲁为华 . 绿洲区滴灌条件下施磷对紫花苜蓿生产性能及品质的影响. 草业学报, 2015,24(10):175-182.
doi: 10.11686/cyxb2014467
ZHANG F F, YU L, MA C H, ZHANG Q B, LU W H . Effect of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang. Acta Prataculturae Sinica, 2015,24(10):175-182.(in Chinese)
doi: 10.11686/cyxb2014467
[41] 李海云, 姚拓, 师尚礼, 王国基, 唐玉, 范宇航, 胡鸿娇, 朱熙栋 . 复合菌剂对玉米根际土壤酶活性和微生物数量的影响. 草原与草坪, 2018,38(6):19-26.
LI H Y, YAO T, SHI S L, WANG G J, TANG Y, FAN Y H, HU H J, ZHU X D . Effect of compound inoculants on maize rhizosphere soil enzyme activity and microbial quantity. Grassland and Turf, 2018,38(6):19-26.(in Chinese)
[42] 田蜜, 陈应龙, 李敏, 刘润进 . 丛枝菌根结构与功能研究进展. 应用生态学报, 2013,24(8):2369-2376.
TIAN M, CHEN Y L, LI M, LIU R J . Structure and function of arbuscular mvcorrhiza: A review. Chinese Journal of Applied Ecology, 2013,24(8):2369-2376.(in Chinese)
[43] 刘兆娜, 郭绍霞, 李伟 . AM真菌对百合生长和生理特性的影响. 草业学报, 2017,26(11):85-93.
LIU Z N, GOU S X, LI W . Effects of arbuscular mycorhizal fungi on growth and physiological characteristics of Lilium brownii. Acta Prataculturae Sinica, 2017,26(11):85-93.(in Chinese)
[44] 李文彬, 卢文倩, 谢佳委, 刘艳敏, 刘润进, 郭绍霞 . 丛枝菌根真菌对郁金香生长及其切花生理的影响. 菌物学报, 2018,37(4):456-465.
LIU W B, LU W J, XIE J W, LIU Y M, LIU R J, GUO S X . Effects of arbuscular mycorrhizal fungi on the growth and cut flower physiology of Tulipa gesneriana. Mycosystema, 2018,37(4):456-465. (in Chinese)
[45] JONES M D, SMITH S E . Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 2004,82(8):1089-1109.
doi: 10.1139/b04-110
[46] PARNISKE M . Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 2008,6(10):763-775.
[47] THANGAVELU M, KARUTHAMUTHU U . Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil. Journal of Forestry Research, 2018,29(3):663-673.
[48] MIRANSARI M . Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011,89(4):917-930.
doi: 10.1007/s00253-010-3004-6
[49] 付晓峰, 张桂萍, 张小伟, 任嘉红 . 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响. 西北植物学报, 2016,36(2):353-360.
FU X F, ZHANG G P, ZHANG X W, REN J H . Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2016,36(2):353-360. (in Chinese)
[50] TAMEHIRO N, OKAMOTO-HOSOYA Y, OKAMOTO S, UBUKATA M, HAMADA M, NAGANAWA H, OCHI K . Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial Agents and Chemotherapy, 2002,46(2):315-320.
[51] CHEN G C, HE Z L . Microbial biomass phosphorus turnover in variable-charge soils in China. Communications in Soil Science and Plant Analysis, 2002,33(13/14):2101-2117.
doi: 10.1081/CSS-120005751
[52] TORO M, AZCON R, BAREA J . Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate- solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32)P) and nutrient cycling. Applied and Environmental Microbiology, 1997,63(11):4408-4412.
[53] BENDER S F, CONEN F , VAN, D H M G A . Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015,80:283-292.
doi: 10.1016/j.soilbio.2014.10.016
[54] HEIJDEN M G A V D, BARDGETT R D, STRAALEN N M V . The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters, 2008,11(3):296-310.
doi: 10.1111/ele.2008.11.issue-3
[55] BAUDOIN E, NAZARET S, MOUGEL C, RANJARD L, MOENNE- LOCCOZ Y . Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRL7 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biology& Biochemistry, 2009,41(2):409-413.
[56] 李娜, 乔志伟, 洪坚平, 谢英荷, 张铁全 . 磷细菌在复垦土壤上生长规律及对磷解析特性的影响. 中国生态农业学报, 2015,23(8):964-972.
LI N, QIAO Z W, HONG J P, XIE Y H, ZHANG T Q . Phosphorus solubilizing bacteria growth and effects on soil phosphorus adsorption- desorption characteristics in reclaimed soils. Chinese Journal of Eco-Agriculture, 2015,23(8):964-972. (in Chinese)
[57] 武志海, 刘晶晶, 杨美英, 卢冬雪, 岳胜天, 付丽 . 外源溶磷菌对不同土壤条件下大豆生长特性的影响. 大豆科学, 2017,36(1):78-86.
WU Z H, LIU J J, YANG M Y, LU D X, YUE S T, FU L . Effects of exogenous phosphate-solubilizing bacteria on growth characteristics of soybean under different soil condition. Soybean Science, 2017,36(1):78-86. (in Chinese)
[58] GEISSELER D, HORWATH W R, JOERENSEN R G, LUDWIG B . Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology & Biochemistry, 2011,42(12):2058-2067.
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[5] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[6] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[9] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[10] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[11] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[12] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[13] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[14] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[15] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!