Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2069-2078.doi: 10.3864/j.issn.0578-1752.2019.12.005

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment and Application of a Triplex PCR Detection System for Vegetable Soil-Borne Pathogens

LIU RuiChi1,2,CHENG YouPu2,CHAI ALi1(),SHI YanXia1,XIE XueWen1, PATIGULI3,LI BaoJu1()   

  1. 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 College of Horticultural and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384
    3 Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2019-02-20 Accepted:2019-03-18 Online:2019-06-16 Published:2019-06-22
  • Contact: ALi CHAI,BaoJu LI E-mail:chaiali@caas.cn;libaoju@caas.cn

Abstract:

【Objective】The objective of this study is to establish a triplex PCR system for the detection of Pythium aphanidermatum, Fusarium oxysporum and Verticillium dahliae, and to provide technology and method for early diagnosis and identification of soil-borne diseases of vegetables.【Method】Three sets of specific primers were selected to analyze the influencing factors of triplex PCR and the primer concentration, annealing temperature, amplification cycles and extension time of PCR reaction were optimized. The best triplex PCR detection system for vegetable soil-borne pathogenic fungi was established and the sensitivity of the system was detected. In order to test the stability of the system, 2×Taq Master PCR Mix (Beijing Biomed Co. Ltd) and TaKaRa Taq enzyme (TaKaRa Biotechnology Dalian Co. Ltd) were used by C1000 Touch TM (Thermo Fisher Scientific Co. Ltd) and Aeris TM type (Esco Micro Pte Ltd) thermal cycle meter for amplification. The triplex PCR and pathogen isolation and detection of 35 disease samples and 149 soil samples collected in the field were carried out to determine the applicability of the triplex PCR detection system.【Result】In the triplex PCR detection system, the specific target fragments of P. aphanidermatum, F. oxysporum and V. dahliae with the length of 163, 328 and 530 bp could be amplified by AsAPH2B/AsPyF, FOF1/FOR1, VActF/VActR, respectively. The 25 μL reaction system contained 0.12 μmol·L -1 AsAPH2B/AsPyF, 0.16 μmol·L -1 FOF1/FOR1, 0.24 μmol·L -1 VActF/VActR, 2×Taq Master PCR Mix 12.5 μL. The annealing temperature was 60.8℃ and the number of cycles was 35. The detection limitation was 10 -1ng·μL -1for pure culture of pathogens. For artificially infected substrate, the detection limitations were 10 5, 10 6 spores/g and 10 -2 mg hyphae/g for V. dahliae, F. oxysporum and P. aphanidermatum, respectively. The results were consistent of 2×Taq Master PCR Mix and TaKaRa Taq enzyme, which were amplified by C1000 Touch TM and Aeris TM type thermal cycle meter. It meant that the triplex PCR system was stable. The infected tissues and soil samples collected in the field were detected, and 25 tissues and 71 soil samples were detected for carrying pathogen, which were consistent with the results of isolation and culture.【Conclusion】The triplex PCR detection system established in this study has the characteristics of high sensitivity, stability and reproducibility, and can be used for rapid and accurate detection of P. aphanidermatum, F. oxysporum and V. dahliae in the infected plant and the surrounding soil. It provides an effective technical means for early prevention and epidemic monitoring of vegetable soil-borne diseases.

Key words: vegetable, triplex PCR, soil-borne disease, Pythium aphanidermatum, Fusarium oxysporum, Verticillium dahliae

Table 1

The strains used in the test"

病原菌
Pathogen
寄主
Host
菌株编号
Strain number
引物 Primer
AsAPH2B/AsPyF FOF1/FOR1 VActF/VActR
瓜果腐霉P. aphanidermatum 番茄Tomato FQ15092209 + - -
尖镰孢F. oxysporum 黄瓜Cucumber HG12090201 - + -
大丽轮枝菌V. dahliae 茄子Eggplant QZ12061103 - - +
茄镰孢F. solani 黄瓜Cucumber HG14060601 - - -
芹菜Celery QC15061008 - - -
核盘菌Sclerotinia sclerotiorum 青花菜Broccoli QHC18032301 - - -
茄子Eggplant QZ11102201 - - -
辣椒疫霉Phytophthora capsici 辣椒Pepper LJ12010805 - - -
辣椒Pepper LJ18081001 - - -
灰葡萄孢Botrytis cinerea 番茄Tomato FQ11051301 - - -
黄瓜Cucumber HG11021509 - - -
立枯丝核菌Rhizoctonia solani 白菜Chinese cabbage BC16052001 - - -
生菜Lettuce SC16052001 - - -
茄科劳尔氏菌Ralstonia solanacearum 番茄Tomato FQ12080802 - - -
番茄Tomato FQ16060706 - - -
胡萝卜果胶杆菌Pectobacterterium carotovorum 黄瓜Cucumber HG1501503604 - - -
白菜Chinese cabbage BC18082306 - - -
密执安棒形杆菌密执安亚种
Clavibacter michiganensis subsp. michiganensis
番茄Tomato FQ18082408 - - -
番茄Tomato FQ18082410 - - -

Table 2

The primers used in the test"

病原菌Pathogen 序列Sequence (5′-3′) 产物大小Product length (bp) 参考文献Reference
瓜果腐霉
P. aphanidermatum
AsAPH2B: GCGCGTTGTTCACAATAAATTGC 163 [19]
AsPyF: CTGTTCTTTCCTTGAGGTG
尖镰孢F. oxysporum FOF1: ACATACCACTTGTTGCCTCG 328 [20]
FOR1: CGCCAATCAATTTGAGGAACG
大丽轮枝菌V. dahliae VActF: TAATTCACAATGGAGGGTAGG 530 [21]
VActR: GTAAGGATACCACGCTTGG

Fig. 1

Optimization of the annealing temperature for triplex PCR"

Table 3

The results of PCR products"

病原菌Pathogen GenBank登录号 GenBank accession number 同源性Homology rate (Blastn) (%)
瓜果腐霉P. aphanidermatum KU211462.1 99
尖镰孢F. oxysporum KU528856.1 99
大丽轮枝菌V. dahliae KU057923.1 99

Fig. 2

The specific detection of triplex PCR"

Fig. 3

The sensitivity of triplex PCR for detection of DNA from a single pathogen"

Fig. 4

The sensitivity of triplex PCR detection"

Fig. 5

The stability detection of triplex PCR system"

Fig. 6

Sensitivity of triplex PCR detection in artificially inoculated substrate"

Table 4

Identification of diseases samples in different areas by triplex PCR"

采样时间
Sampling time
采样地点
Sampling site
寄主
Host
疑似病害
Suspected disease
采样部位
Sampling position
三重PCR
Triple PCR
分离培养
Isolated culture
样本数量
Number of samples
2017-12-09 浙江苍南
Cangnan, Zhejiang
茄子Eggplant 黄萎病Verticillium wilt 茎基Stem + V. dahliae 4
土壤Soil + V. dahliae 4
2018-01-16 山东寿光
Shouguang, Shandong
黄瓜Cucumber 枯萎病Fusarium wilt 茎基Stem + F. oxysporum 1
土壤Soil + F. oxysporum 1
2018-03-15 浙江苍南
Cangnan, Zhejiang
黄瓜Cucumber 枯萎病Fusarium wilt 茎基Stem + F. oxysporum 1
土壤Soil + F. oxysporum 1
2018-03-20 山东寿光
Shouguang, Shandong
黄瓜Cucumber 根腐病Root rot 茎基Stem + P. aphanidermatum 2
土壤Soil + P. aphanidermatum 2
2018 浙江苍南
Cangnan, Zhejiang
黄瓜Cucumber 枯萎病Fusarium wilt 茎基Stem + F. oxysporum 2
土壤Soil + F. oxysporum 2
2018-10-21 山东寿光
Shouguang, Shandong
黄瓜Cucumber 根腐病Root rot 茎基Stem + P. aphanidermatum 1
土壤Soil + P. aphanidermatum 1
2018-10-21 山东寿光
Shouguang, Shandong
黄瓜Cucumber 根腐病Root rot 茎基Stem - 1
土壤Soil - 1
2018-03-15 浙江苍南
Cangnan, Zhejiang
黄瓜Cucumber 枯萎病Fusarium wilt 茎基Stem - 1
土壤Soil - 1
2018-03-20 山东寿光
Shouguang, Shandong
黄瓜Cucumber 根腐病Root rot 茎基Stem - 1
土壤Soil - 1
2018-08-31 新疆喀什
Kashi, Xinjiang
甜瓜Muskmelon 枯萎病Fusarium wilt 茎基Stem F. oxysporum 11
茎基Stem - 4
2019-01-02 辽宁绥中
Suizhong, Liaoning
黄瓜Cucumber 枯萎病Fusarium wilt 茎基Stem + F. oxysporum 3
茎基Stem - 3
2017-2018 浙江苍南
Cangnan, Zhejiang
土壤Soil - 48
土壤Soil + F. oxysporum 12
土壤Soil + V. dahliae 12
2018 山东寿光
Shouguang, Shandong
土壤Soil - 27
土壤Soil + V. dahliae 3
土壤Soil + F. oxysporum 6
土壤Soil + P. aphanidermatum 12
2018-08-24 宁夏平罗
Pingluo, Ningxia
土壤Soil + P. aphanidermatum 9
2018-08-24 浙江永康
Yongkang, Zhejiang
土壤Soil + P. aphanidermatum 6
[1] KAGEYAMA K, SUZUKI M, PRIYATMOJO A, OTO Y, ISHIGURO K, SUGA H, AOYAGI T, FUKUI H . Characterization and identification of asexual strains of Pythium associated with root rot of rose in Japan . Journal of Phytopathology, 2003,151(9):485-491.
[2] 刘会清 . 植病生防菌剂对连作设施蔬菜的防病促生效果研究[D]. 北京: 中国农业科学院, 2010.
LIU H Q . Studies on the growth promoting and disease prevention effect of biological control fungus to continuous cropping vegetables in greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[3] 乔世佳 . 生物熏蒸对土传病害及黄瓜生长的影响[D]. 哈尔滨: 东北农业大学, 2011.
QIAO S J . Effect of biofumigation on soilborne diseases and cucumber growth[D]. Harbin: Northeast Agricultural University, 2011. (in Chinese)
[4] 王丽丽, 蔡超, 罗明, 顾爱星, 王慧, 李克梅 . 马铃薯黄萎病研究现状. 生物安全学报, 2017,26(1):30-38.
WANG L L, CAI C, LUO M, GU A X, WANG H, LI K M . Research advances of Verticillium wilt of potato . Journal of Biosafety, 2017,26(1):30-38. (in Chinese)
[5] 张旭, 尚楠, 张宝, 张志刚, 尚庆茂 . 抗瓜果腐霉芽孢杆菌优良菌株的筛选及生物学特性. 食品科学, 2012,33(5):138-143.
ZHANG X, SHANG N, ZHANG B, ZHANG Z G, SHANG Q M . Screening and biological characteristics of Bacillus sp. with high anti-fungal activity against Pythium aphanidermatum. Food Science, 2012,33(5):138-143. (in Chinese)
[6] TAHMATSIDOU V , O’SULLIVAN J, CASSELLS A C, VOYIATZIS D, PAROUSSI G. Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria × ananassa cv. Selva). Applied Soil Ecology, 2006,32:316-324.
[7] SASU M A, SEIDL-ADAMS I, WALL K, WINSOR J A, STEPHENSON A G . Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environmental Entomology, 2010,39(1):140-148.
[8] SCHROEDER K L, OKUBARA P A, TAMBONG J T , LÉVESQUE C A, PAULITZ T C. Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology, 2006,96(6):637-647.
[9] 王楠, 王剑, 尹丹韩, 高观朋, 王伟 . 三重PCR检测草莓灰霉病菌、炭疽病菌和黄萎病菌. 中国农业科学, 2010,43(21):4392-4400.
WANG N, WANG J, YIN D H, GAO G P, WANG W . Triplex PCR detection of Botrytis cinerea, Colletotrichum gloeosporioides and Verticillium dahlia in infected strawberry plant tissues. Scientia Agricultura Sinica, 2010,43(21):4392-4400. (in Chinese)
[10] 高永洋, 王楠, 高观朋, 王伟 . 瓜黑星病菌、枯萎病菌和蔓枯病菌的三重PCR检测. 植物病理学报, 2010,40(4):343-350.
GAO Y Y, WANG N, GAO G P, WANG W . Triplex PCR detection of Cladosporium cucumerinum, Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues. Acta Phytopathologica Sinica, 2010,40(4):343-350. (in Chinese)
[11] 严蕾艳, 张宴瑜, 马凯慧, 宋慧, 王毓洪 . 两种瓜类镰刀菌的多重PCR检测. 华北农学报, 2014,29(增刊):44-47.
YAN L Y, ZHANG Y Y, MA K H, SONG H, WANG Y H . Multiple PCR detection of Fusarium oxysporum and Fusarium solani in cucurbitaceous plants. Acta Agriculturae Boreali-Sinica, 2014,29(Suppl.):44-47. (in Chinese)
[12] 王楠, 王伟 . 三重PCR检测黄瓜炭疽病菌、菌核病菌和细菌性萎蔫病菌. 植物病理学报, 2014,44(2):129-138.
WANG N, WANG W . Triplex PCR detection of Colletotrichum orbiculare, Sclerotinia sclerotiorum and Erwinia tracheiphila in infected cucumber tissues. Acta Phytopathologica Sinica, 2014,44(2):129-138. (in Chinese)
[13] THOMAS S H, HOUSLEY J M, REYNOLDS A N, PENCZYKOWSKI R M, KENLINE K H, HARDEGREE N, SCHMIDT S, DUFFY M A . The ecology and phylogeny of oomycete infections in Asplanchna rotifers. Freshwater Biology, 2011,56(2):384-394.
[14] MARCHAND G, CHEN Y, BERHANE N A, WEI L , ANDRÉ LÉVESQUE C, XUE A G. Identification of Pythium spp. from the rhizosphere of soybeans in Ontario, Canada. Canadian Journal of Plant Pathology, 2014,36(2):246-251.
[15] GEISER D M , JIMÉNEZ-GASCO M M, KANG S, MAKALOWSKA I, VEERARAGHAVAN N, WARD T J, ZHANG N, KULDAU G A, O’DONNELL K. FUSARIUM-ID v.1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 2004,110:473-479.
[16] RAHJOO V, ZAD J, JAVAN-NIKKHAH M, MIRZADI GOHARI A, OKHOVVAT S M, BIHAMTA M R, RAZZAGHIAN J, KLEMSDAL S S . Morphological and molecular identification of Fusarium . isolated from maize ears in Iran. Journal of Plant Pathology, 2008,90(3):463-468.
[17] LI K N, ROUSE D I, GERMAN T L . PCR primers that allow intergeneric differentiation of ascomycetes and their application to Verticillium. spp. Applied and Environmental Microbiology, 1994,60(12):4324-4331.
[18] BRESSAN M, BLUM A, CASTEL L, TRINSOUTROT-GATTIN I, LAVAL K, GANGNEUX C . Assessment of Verticillium. flax inoculum in agroecosystem soils using real-time PCR assay. Applied Soil Ecology, 2016,108:176-186.
[19] ASANO T, SENDA M, SUGA H, KAGEYAMA K . Development of multiplex PCR to detect five Pythiu. species related to turfgrass diseases. Journal of Phytopathology, 2010,158(9):609-615.
[20] NEL B, STEINBERG C , N. LABUSCHAGNE N, VILJOEN A. Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathology, 2006,55(2):207-216.
[21] GHARBI Y, TRIKI M A, TRABELSI R, FENDRI I, DAAYF F, GDOURA R . Genetic structure of Verticillium. dahliae isolates infecting olive trees in Tunisia using AFLP, pathogenicity and PCR markers. Plant Pathology, 2015,64(4):871-879.
[22] 康华军, 柴阿丽, 石延霞, 谢学文, 袁军海, 李宝聚 . 番茄细菌性斑点病菌、溃疡病菌、青枯病菌和疮痂病菌的四重PCR检测方法. 园艺学报, 2018,45(11):2254-2264.
KANG H J, CHAI A L, SHI Y X, XIE X W, YUAN J H, LI B J . Quadruple PCR detection of Pseudomonas syringae pv. tomato, Clavibacter michiganensis subsp. michiganensis, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria in infected tomato tissues. Acta Horticulturae Sinica, 2018,45(11):2254-2264. (in Chinese)
[23] 李淑芬, 莫照兰, 凡娜, 朱明, 茅云翔 . 一株紫菜腐霉的鉴定及其对条斑紫菜的致病性. 中国海洋大学学报, 2016,46(7):27-34.
LI S F, MO Z L, FAN N, ZHU M, MAO Y X . Identification of a Pythrium porphyrae strain causing the red rot disease of Porphyra yezoensis. Periodical of Ocean University of China, 2016,46(7):27-34. (in Chinese)
[24] 高苇, 李宝聚, 王万立, 郝永娟, 石延霞 . 土壤中黄瓜棒孢叶斑病病原菌实时荧光定量PCR检测技术研究. 华北农学报, 2014,29(2):71-74.
doi: 10.7668/hbnxb.2014.02.013
GAO W, LI B J, WANG W L, HAO Y J, SHI Y X . Detection of Corynespora cassiicola in soil with real-time quantitative PCR. Acta Agriculturae Boreali-Sinica, 2014,29(2):71-74. (in Chinese)
doi: 10.7668/hbnxb.2014.02.013
[25] 张真和, 马兆红 . 我国设施蔬菜产业概况与“十三五”发展重点——中国蔬菜协会副会长张真和访谈录. 中国蔬菜, 2017(5):1-5.
ZHANG Z H, MA Z H . Overview of China’s facility vegetable industry and key points of the 13th five-year plan——Interview with Zhang Zhenhe, vice president of China Vegetable Association. China Vegetables, 2017(5):1-5. (in Chinese)
[26] 何玮玲, 张驰, 杨静, 黄明, 杨军 . 食品中4种肉类成分多重PCR的快速鉴别方法. 中国农业科学, 2012,45(9):1873-1880.
doi: 10.3864/j.issn.0578-1752.2012.09.024
HE W L, ZHANG C, YANG J, HUANG M, YANG J . A quick multiplex PCR method for the identification of four meat ingredients in food products. Scientia Agricultura Sinica, 2012,45(9):1873-1880. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.09.024
[27] HE Y, ZHAO Y, ZHOU G, HUANG M . Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from aged refuse for microbial community analysis. World Journal of Microbiology and Biotechnology, 2009,25(11):2043-2051.
doi: 10.1007/s11274-009-0106-3
[28] 何宛芹, 付瑶, 鲁雯璐, 常小丽, 杨文钰 . 大豆根腐病致病镰孢菌的多重PCR检测技术. 植物保护学报, 2017,44(4):609-616.
HE W Q, FU Y, LU W L, CHANG X L, YANG W Y . A multiplex PCR detection technique for the pathogenic Fusarium species causing soybean root rot. Journal of Plant Protection, 2017,44(4):609-616. (in Chinese)
[29] 孙娟, 陈舜胜, 胡培龙, 于子翔, 于翠, 杨翠云 . 同步检测棉黄萎病菌、枯萎病菌和炭疽病菌三重PCR方法的建立. 上海农业学报, 2014,30(4):10-15.
SUN J, CHEN S S, HU P L, YU Z X, YU C, YANG C Y . A triplex PCR method to simultaneously detect Verticillium dahlia, Fusarium oxysporum f. sp. vasinfectum and Colletotrichum gloeosporioiles. Acta Agriculturae Shanghai, 2014,30(4):10-15. (in Chinese)
[1] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[2] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[3] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[4] FANG WenSheng,CAO AoCheng,WANG QiuXia,YAN DongDong,LI Yuan,JIN Xi,ZHAO QiLong,QIU YaoKang,ZHAO HongMing. A New Integrated Soil Disinfection Machine Improves the Uniformity of Dazomet in Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2570-2580.
[5] ZHANG GuiFen,ZHANG YiBo,LIU WanXue,ZHANG Fan,XIAN XiaoQing,WAN FangHao,FENG XiaoDong,ZHAO JingNa,LIU Hui,LIU WanCai,ZHANG XiaoMing,LI QingHong,WANG ShuMing. Effect of Trap Color and Position on the Trapping Efficacy of Tuta absoluta [J]. Scientia Agricultura Sinica, 2021, 54(11): 2343-2354.
[6] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[7] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[8] LIU HaiYang, WANG Wei, ZHANG RenFu, RAXIDA ·ABDURAHMAN, YAO Ju. Fungal Community Structure of Cotton-Field Soil Under Different Incidences of Cotton Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(3): 455-465.
[9] LIANG YingBo,LI Ze,QIU DeWen,ZENG HongMei,LI GuangYue,YANG XiuFen. Identification and Analysis of Differentially Expressed Genes Induced by Protein Elicitor PevD1 in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(21): 3794-3805.
[10] LIU Yong,LI Fan,LI YueYue,ZHANG SongBai,GAO XiWu,XIE Yan,YAN Fei,ZHANG AnSheng,DAI LiangYing,CHENG ZhaoBang,DING Ming,NIU YanBing,WANG ShengJi,CHE HaiYan,JIANG Tong,SHI XiaoBin,HE ZiFu,WU YunFeng,ZHANG DeYong,QING Ling,YAN WanRong,YANG XueHui,TANG YaFei,ZHENG HongYing,TANG QianJun,ZHANG SongBai,ZHANG DongFang,CAI Li,TAO XiaoRong. Identification, Distribution and Occurrence of Viruses in the Main Vegetables of China [J]. Scientia Agricultura Sinica, 2019, 52(2): 239-261.
[11] LIU YanJun,LIU Zhe,MENG XiangHong,LU BaiYi. Evaluation of the Vegetables Nutritive Values Based on ‘Three Degree’ Method [J]. Scientia Agricultura Sinica, 2019, 52(18): 3177-3191.
[12] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[13] XU Li, LU AnXiang, TIAN XiaoQin, HE HongJu, YIN JingWei. Accumulation Characteristics and Risk Assessment of Heavy Metals in Typical Greenhouse Vegetable Bases [J]. Scientia Agricultura Sinica, 2017, 50(21): 4149-4158.
[14] PING Hua, LI Yang, LI BingRu, HE ZhaoYing, LIU JiPei, MA ZhiHong. Simultaneous Determination of Multi Herbicides Residues in Vegetables by Dispersive Solid Phase Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2017, 50(21): 4159-4169.
[15] LI RuoNan, WU XuePing, ZHANG YanCai, WANG LiYing, ZHAI FengZhi, CHEN LiLi, SHI JianShuo, XU QiangSheng, HUANG ShaoWen. Effects of Reduced Phosphorus Fertilization on Soil Phosphorus Accumulation, Leaching and Utilization in Greenhouse Vegetable Production [J]. Scientia Agricultura Sinica, 2017, 50(20): 3944-3952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!