Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2056-2068.doi: 10.3864/j.issn.0578-1752.2019.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Parameter Optimization for the Simulation of Leaf Area Index of Dryland Wheat with the APSIM Model

NIE ZhiGang1,2,LI Guang3(),WANG Jun2,MA WeiWei3,LUO CuiPing2,DONG LiXia2,LU YuLan2   

  1. 1 College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070
    2 College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070
    3 College of Forestry, Gansu Agricultural University, Lanzhou 730070
  • Received:2019-01-28 Accepted:2019-04-08 Online:2019-06-16 Published:2019-06-22
  • Contact: Guang LI E-mail:lig@gsau.edu.cn

Abstract:

【Objective】The effective application of the model depends on the fast and accurate estimation of parameters. The current problems in the calibration of crop growth model parameters include large data volume, long time consumption, lack of precision, and low efficiency. The study tried to solve the problems. 【Method】Based on the field experimental data of two experimental sites (Mazichuan village, Lijiabaotown and Anjiagou village, Fengxiangtown) in Andingdistrict, Dingxi city in multiple years (2002-2005 and 2015-2017) and the meteorological data in Andingdistrict, Dingxicity from 1971 to 2017, the parameters related to dryland wheat leaf area index (LAI) in the APSIM (agricultural production systems simulator) model were optimized with the intelligent iteration search principle of shuffled frog leaping algorithm (SFLA) and tested by the correlation analysis method. 【Result】The biological evolution learning strategy of local depth search within sub-group and global information communication between sub-group in frog population, which was relatively independent and coordinated, was used to effectively improve the speed of calculation and realize the fast and accurate estimation of the parameters related to dryland wheat LAI in the APSIM model. The related parameters mainly included: The required thermal time interval for node appearance on the main stem, the initial node number at emergence, the initial leaf number at emergence, the initial leaf area index at emergence, the growing node number, and the maximum specific leaf area. LAI was respectively simulated by using the parameters based on the trial and error method and based on SFLA. After parameter optimization, the root mean square error (RMSE) between simulated and measured wheat LAI reduced from 0.069 to 0.027, the normalized root mean square error (NRMSE) decreased from 8.09% to 4.56%, and the model effective index (ME) increased from 0.979 to 0.993. 【Conclusion】Compared with the trial and error method, which was usually used in the calibration of APSIM model, the intelligent iterative behavior with spontaneous learning characteristics based on the SFLA could realize automatic calibration of the parameters and improve the efficiency. The parameters estimated based on the SFLA could remarkably improve the simulation accuracy of wheat LAI. The application of SFLA was effective in calibrating crop models involving complex eco-physiological processes, and it could provide an effective parameter optimization method for improving the disadvantages in the model parameter calibration process include large data volume, long time consumption, lack of precision, and low efficiency.

Key words: APSIM, wheat, leaf area index, parameter optimization, shuffled frog leaping algorithm

Fig.1

Basic optimization principle with the shuffled frog leaping algorithm (SFLA)"

Fig.2

Flow-process diagram of optimization of the parameters related to dryland wheatleaf area index in the APSIM model with the shuffled frog leaping algorithm (SFLA)"

Fig.3

Flow-process diagram of local depth search with the shuffled frog leaping algorithm (SFLA) insub-group"

Table 1

Parametersof soil property and lower water limit of wheat in the experiment site used for APSIM model"

项目
Item
土层深度 Soil depth
5 cm 10 cm 30 cm 50 cm 80 cm 110 cm 140 cm 170 cm 200 cm
容重 BD (g·cm-3 1.29 1.23 1.32 1.20 1.14 1.14 1.13 1.12 1.11
萎蔫系数 WC (mm·mm-1) 0.08 0.08 0.08 0.08 0.09 0.09 0.11 0.13 0.13
最大持水量 DUL (mm·mm-1) 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26 0.26
饱和水分含量 SM (mm·mm-1) 0.46 0.49 0.45 0.50 0.52 0.52 0.48 0.53 0.53
风干系数 CA (mm·mm-1) 0.01 0.01 0.05 0.07 0.07 0.07 0.07 0.07 0.07
土壤导水率 SWC (mm·h-1) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
小麦有效水分下限 LLW (mm·mm-1) 0.09 0.09 0.09 0.09 0.09 0.10 0.11 0.13 0.15

Table 2

Comparison between the SFLA optimized and default values of parameters related todryland wheatleaf area index in the APSIM model"

参数
Parameter
默认值
Default value
优化值
Optimized value
主茎上节出现所需的热时间间隔
The required thermal timeinterval for node appearance on the main stem (°C·d)
95.0 98.5
小麦出苗后初始化的节数The initial node number at emergence 2.00 1.79
小麦出苗后初始化的叶片数The initial leaf number at emergence 2.00 1.66
小麦出苗后初始化的叶面积指数The initial leaf area index at emergence 0.080 0.074
某日正在生长的节数The growing node number 2.00 1.86
最大比叶面积The maximum specific leaf area (mm2·g-1) 26000 hSLA(LAId)

Fig.4

Relationship between maximum specific leaf area and leaf area index of dryland wheat"

Fig. 5

Relationship of observed and simulated value ontheleaf area indexofdrylandwheat"

Table 3

Test results of simulation on the leaf area index of dryland wheat"

模型参数
Model parameter
麻子川村Mazichuan 安家沟村Anjiagou
RMSE NRMSE (%) ME RMSE NRMSE(%) ME
默认值 Default value 0.047 7.06 0.983 0.090 9.12 0974
优化值 Optimized value 0.031 4.53 0.993 0.023 4.59 0.992
[1] 曹卫星, 朱艳, 田永超, 姚霞, 刘小军 . 数字农作技术研究的若干进展与发展方向. 中国农业科学, 2006,39(2):281-288.
CAO W X, ZHU Y, TIAN Y C, YAO X, LIU X J . Research progress and prospect of digital farming techniques. ScientiaAgriculturaSinica, 2006,39(2):281-288. (in Chinese)
[2] 沈禹颖, 南志标 , BILL B, MICHAEL R, 陈文, 邵新庆. APSIM模型的发展与应用. 应用生态学报, 2002,13(8):1027-1032.
SHEN Y Y, NAN Z B, BILL B, MICHAEL R, CHEN W, SHAO X Q . Development of APSIM (Agricultural Production Systems Simulator) and its application. Chinese Journal of Applied Ecology, 2002,13(8):1027-1032. (in Chinese)
[3] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D . The DSSAT cropping system model. European Journal of Agronomy, 2003,18(3):235-265.
doi: 10.1016/S1161-0301(02)00107-7
[4] WILLIAMS J, JONES C, KINIRY J, SPANEL D . The EPIC crop growth model. Transactions of the ASAE, 1989,32(2):497-511.
doi: 10.13031/2013.31032
[5] DIEPEN C, WOLF J, KEULEN H, RAPPOLDT C . Wofost: A simulation model of crop production. Soil Use Manage, 1989,5(1):16-24.
doi: 10.1111/sum.1989.5.issue-1
[6] 庄嘉祥, 姜海燕, 刘蕾蕾, 王芳芳, 汤亮, 朱艳, 曹卫星 . 基于个体优势遗传算法的水稻生育期模型参数优化. 中国农业科学, 2013,46(11):2220-2231.
doi: 10.3864/j.issn.0578-1752.2013.11.005
ZHUANG J X, JIANG H Y, LIU L L, WANG F F, TANG L, ZHU Y, CAO W X . Parameters optimization of rice development stages model based on individual advantages genetic algorithm. ScientiaAgriculturaSinica, 2013,46(11):2220-2231.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.11.005
[7] 房全孝 . 根系水质模型中土壤与作物参数优化及其不确定性评价. 农业工程学报, 2012,28(10):118-123.
FANG Q X . Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model. Transactions of the Chinese Society of AgriculturalEngineering, 2012,28(10):118-123.(in Chinese)
[8] 刘志娟, 杨晓光, 王静, 吕硕, 李克南, 荀欣, 王恩利 . APSIM玉米模型在东北地区的适应性. 作物学报, 2012,38(4):740-746.
doi: 10.3724/SP.J.1006.2012.00740
LIU Z J, YANG X G, WANG J, LÜ S, LI K N, XUN X, WANG E L . Adaptability of APSIM maize model in Northeast China. ActaAgronomicaSinica, 2012,38(4):740-746.(in Chinese)
doi: 10.3724/SP.J.1006.2012.00740
[9] 聂志刚, 李广, 雒翠萍, 马维伟, 代永强 . 利用混合蛙跳算法优化基于APSIM的旱地小麦产量形成模型参数. 作物学报, 2018,44(8):1229-1236.
NIE Z G, LI G, LUO C P, MA W W, DAI Y Q . Parameter optimization in APSIM-based simulation model for yield formation of dryland wheat using shuffled frog leaping algorithm. ActaAgronomicaSinica, 2018,44(8):1229-1236.(in Chinese)
[10] 代永强 . 混合蛙跳算法的改进与应用[D]. 兰州: 甘肃农业大学, 2011.
DAI Y Q . The improvement and application of shuffled frog leaping algorithm[D]. Lanzhou: Gansu Agricultural University, 2011. (in Chinese)
[11] MANSOURI M, DESTAIN M F . An improved particle filtering for time-varying nonlinear prediction of biomass and grain protein content. Computers and Electronics in Agriculture, 2015,114:145-153.
doi: 10.1016/j.compag.2015.04.006
[12] CALMON M A, JONES J W, SHINDE D, SPECHT J E . Estimating parameters for soil water balance models using adaptive simulated annealing. Applied Engineering in Agriculture, 1999,15(6):703-713.
doi: 10.13031/2013.5841
[13] DAI C N, YAO M, XIE Z J, CHEN C H, LIU J G . Parameter optimization for growth model of green house crop using genetic algorithms. Applied Soft Computing, 2009,9(1):13-19.
doi: 10.1016/j.asoc.2008.02.002
[14] 刘铁梅, 王燕, 邹薇, 孙东发, 汤亮, 曹卫星 . 大麦叶面积指数模拟模型. 应用生态学报, 2010,21(1):121-128.
LIU T M, WANG Y, ZUO W, SUN D F, TANG L, CAO W X . Simulation model of barley leaf area index. Chinese Journal of Applied Ecology, 2010,21(1):121-128. (in Chinese)
[15] 汪定伟 . 智能优化算法. 北京: 高等教育出版社, 2007: 136-148.
WANG D W. Intelligent Optimization Methods. Beijing: Higher Education Press, 2007: 136-148. (in Chinese)
[16] 孙建平, 闫蕾, 李妍, 张婧 . 基于改进遗传算法的模糊PID控制器设计. 仪器仪表学报, 2006,27(6):1991-1992.
SUN J P, YAN L, LI Y, ZHANG J . Design of fuzzy PID controllers based on improved genetic algorithms. Chinese Journal of Scientific Instrument., 2006,27(6):1991-1992. (in Chinese)
[17] EUSUFF M M, LANSEY K E . Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 2003,129(3):210-225.
doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
[18] 李广, 黄高宝 , WILLIAM B, 陈文. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009,29(5):2655-2663.
LI G, HUANG G B, WILLIAM B, CHEN W . Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region. ActaEcologicaSinica, 2009,29(5):2655-2663. (in Chinese)
[19] 李广, 黄高宝 . 基于APSIM 模型的降水量分配对旱地小麦和豌豆产量影响的研究. 中国生态农业学报, 2010,18(2):342-347.
LI G, HUANG G B . Determination of the effect of precipitation distribution on yield of wheat and pea in dryland using APSIM. Chinese Journal of Eco-Agriculture, 2010,18(2):342-347. (in Chinese)
[20] 李广, 李玥, 黄高宝, 罗珠珠, 王琦, 刘强, 燕振刚, 赵有益 . 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报, 2012,20(8):1088-1095.
LI G, LI Y, HUANG G B, LUO Z Z, WANG Q, LIU Q, YAN Z G, ZHAO Y Y . Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model. Chinese Journal of Eco-Agriculture, 2012,20(8):1088-1095.(in Chinese)
[21] 李玥, 牛俊义, 谢亚萍, 吴兵, 高珍妮, 刘栋, 剡斌 . 基于APSIM的油用亚麻叶面积指数模型构建. 中国油料作物学报, 2015,37(3):329-335.
doi: 10.7505/j.issn.1007-9084.2015.03.011
LI Y, NIU J Y, XIE Y P, WU B, GAO Z N, LIU D, YAN B . Simulation of oilseed flax leaf area index based on APSIM. Chinese Journal of Oil Crop Sciences, 2015,37(3):329-335. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2015.03.011
[22] 聂志刚, 李广 . 基于APSIM的旱地小麦叶面积指数模拟模型构建. 干旱地区农业研究, 2013,31(4):94-98.
NIE Z G, LI G . Modeling of APSIM-based simulation of leaf area index of wheat in dryland. Agricultural Research in the Arid Areas, 2013,31(4):94-98.(in Chinese)
[23] GOUDRIAAN J , VAN LAAR H H. Modelling Potential Crop Growth Processes: Textbook with Exercises. The Netherlands: Kluwer Academic Publishers, 1994: 7-28.
[24] 柏军华, 王克如, 初振东, 陈兵, 李少昆 . 叶面积测定方法的比较研究. 石河子大学学报(自然科学版), 2005,23(2):216-218.
BEI J H, WANG K R, CHU Z D, CHEN B, LI S K . Comparative study on the measure methods of the leaf area. Journal of ShiheziUniversity(Natural Science), 2005,23(2):216-218. (in Chinese)
[25] 鲍士旦 . 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000: 263-268.
BAO S D. Soil Agricultural Chemistry Analysis.3rd edition. Beijing: China Agriculture Press, 2000: 263-268. (in Chinese)
[26] ZHENG B Y, CHENU K, DOHERTY A, CHAPMAN S . The APSIM-Wheat Module (7.5 R3008) Documentation. Toowoomba: APSRU, 2014: 20-25.
[27] RITCHIE J T, GODWIN D C, OTTER-NACKE S . CERES-wheat: A user-oriented wheat yield model.MichiganStateUniversity, East Lansing: AGRISTARS Publication, 1985: 252.
[28] SINCLAIR T R . Water and nitrogen limitations in soybean grain productionI. Model development. Field Crops Research, 1986,15(2):125-141.
doi: 10.1016/0378-4290(86)90082-1
[29] MONTEITH J L . How do crops manipulate water supply and demand. Philosophical Transactions of the Royal Society B-Biological Sciences, 1986,316:245-259.
doi: 10.1098/rsta.1986.0007
[30] 陈国庆, 朱艳, 曹卫星 . 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005,25(1):71-74.
doi: 10.7606/j.issn.1009-1041.2005.01.018
CHEN G Q, ZHU Y, CAO W X . Modeling leaf sheath and internode growth dynamics in wheat. Journal of Triticeae Crops, 2005,25(1):71-74.(in Chinese)
doi: 10.7606/j.issn.1009-1041.2005.01.018
[31] 杨文雄 . 中国西北春小麦. 北京: 中国农业出版社, 2016: 155-161.
YANG W X. Spring Wheat in Northwest China. Beijing: China Agriculture Press, 2016: 155-161. (in Chinese)
[32] 刘铁梅, 曹卫星, 罗卫红, 郭文善 . 小麦叶面积指数的模拟模型研究. 麦类作物学报, 2001,21(2):38-41.
doi: 10.7606/j.issn.1009-1041.2001.02.039
LIU T M, CAO W X, LUO W H, GUO W S . Simulation on leaf area index in wheat. Journal of Triticeae, 2001,21(2):38-41. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2001.02.039
[33] ZHANG X C . Calibration, refinement, and application of the WEPP model for simulation climatic impact on wheat production. Transactions of the ASAE, 2004,47(4):1075-1085.
doi: 10.13031/2013.16580
[34] 何亮, 赵刚, 靳宁, 庄伟, 于强 . 不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析. 农业工程学报, 2015,31(14):148-157.
HE L, ZHAO G, JIN N, ZHUANG W, YU Q . Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(14):148-157.(in Chinese)
[35] 董朝阳, 刘志娟, 杨晓光 . 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015,31(11):157-164.
DONG C Y, LIU Z J, YANG X G . Effect of different grade drought on grain yield of spring maize in Northern China. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(11):157-164.(in Chinese)
[36] ASSENG S, BAR-TAL A, BOWDEN J W, KEATING B A, HERWAARDEN A V, PALTA J A, HUTH N I, PROBERT M E . Simulation of grain protein content with APSIM-N wheat. European Journal Agronomy, 2002,16(1):25-42.
doi: 10.1016/S1161-0301(01)00116-2
[37] 刘铁梅, 邹薇, 刘铁芳, 谢国生, 吴江生, 曹卫星, 李卫平, 曹凑贵, 傅廷栋 . 不同冬油菜品种比叶面积的多因子分析. 作物学报, 2006,32(7):1083-1089.
LIU T M, ZOU W, LIU T F, XIE G S, WU J S, CAO W X, LI W P, CAO C G, FU T D . Analyses of multiple agronomic factors relative to specific leaf area in winter rape cultivars. ActaAgronomicaSinica, 2006,32(7):1083-1089. (in Chinese)
[38] 张怀志, 曹卫星, 周治国, 朱艳, 张立桢 . 棉花适宜叶面积指数的动态知识模型. 棉花学报, 2003,15(3):151-154.
doi: 10.3969/j.issn.1002-7807.2003.03.004
ZHANG H Z, CAO W X, ZHOU Z G, ZHU Y, ZHANG L Z . A dynamic knowledge model for optimail LAI in cotton. Cotton Science, 2003,15(3):151-154. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2003.03.004
[39] GARY C, BARCZI J F, BERTIN N, TCHAMITCHIAN M . Simulation of individual organ growth and development on a tomato plant: A model and a user-friendly interface. ActaHorticulturae, 1995,399:199-205.
[40] 李广 . APSIM模型模拟与应用研究—基于旱地小麦、豌豆保护性耕作定位试验[D]. 兰州: 甘肃农业大学, 2006.
LI G . Study on simulation and application of APSIM model-based on the conservation tillage of dryland wheat and pea[D]. Lanzhou: Gansu Agricultural University, 2006. (in Chinese)
[41] 贺力霞 . 基于动态客流的城市轨道交通列车牵引能耗仿真及优化[D]. 北京: 北京交通大学, 2018.
HE L X . Simulation and optimization of traction energy consumption of urban rail transit based on dynamic passenger flow[D]. Beijing: BeijingJiaotongUniversity, 2018. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!