Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1553-1563.doi: 10.3864/j.issn.0578-1752.2019.09.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Straw Addition on the Formation of Aggregates and Accumulation of Organic Carbon in Dryland Soil

WANG BiSheng1,YU WeiShui1,WU XuePing1(),GAO LiLi1,2,LI Jing1,3,LI ShengPing1,SONG XiaoJun1,LIU CaiCai1,4,LI Qian1,5,LIANG GuoPeng1,CAI DianXiong1,ZHANG JiZong1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 College of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031
    4 College of Geographical Sciences, Shanxi Normal University, Linfen 041004, Shanxi
    5 College of Resource Environment and Tourism, Capital Normal University, Beijing 100048
  • Received:2018-11-07 Accepted:2019-01-21 Online:2019-05-01 Published:2019-05-16
  • Contact: XuePing WU,JiZong ZHANG E-mail:wuxueping@caas.cn;zhangjizong@caas.cn

Abstract:

【Objective】To understand the regularity of aggregation and organic carbon changes after adding straw in long-term conventional tillage soil and to explore the main reason of improved soil organic carbon, the effects of straw incorporation on soil aggregates and the organic carbon content in aggregate were determined, so as to provide theoretical basis for carbon fixation in dryland agriculture.【Method】 An in-lab incubation experiment was conducted for 180 days in a constant temperature incubator at 25℃ with the soil collected from conventional tillage and no-tillage field plot. Four treatments were set up, namely conventional soil without straw (CT), no-tillage soil without straw (NT), conventional tillage soil with straw (CTS) and no-till soil with straw (NTS). Each treatment was sampled 15 replicates periodically for aggregate and organic carbon determinations. The straw was the aboveground parts of maize collected from conventional tillage, and the dosage was 5% dry soil weight.【Result】 (1) Aggregate in CT and NT were dominated by 250-53 μm fraction, accounting for 52%-66% of total aggregates, while in CTS and NTS, the aggregates were dominated by 2 000-250 μm fraction, accounting for 41%-50% of total aggregates. CTS and NTS improved 2 000-250 μm aggregate by 230%-302% and 92%-134% relative to CT and NT, respectively. (2) Straw incorporation significantly increased the mean weight diameter (MWD), geometric mean diameter (GMD) and macro-aggregate content (R0.25) of water-table aggregates. In the 180th day, CTS increased 133%, 130%, and 235%, respectively; compared with CT, NTS increased 53%, 75% and 87%, respectively, compared with NT. (3) In the 180th day, compared with CT, CTS increased the organic carbon content in aggregate of 250-53 μm and <53 μm by 70% and 54%, respectively, and compared with NT, NTS increased in the same aggregates by 30% and 25%, respectively. (4) The contribution of organic carbon in 2 000-250 μm aggregate to soil organic carbon was significantly increased by CTS and NTS, with improvement of 49%-61% and 50%-60%, respectively, which was more affected by aggregate composition. 【Conclusion】 The addition of straw could effectively increase the content of macroaggregates (>250 μm) in the dryland, enhance its stability and increase the contribution of macroaggregates to soil organic carbon, and had a greater effect on the conventional tillage soil.

Key words: straw addition, dryland soil, aggregate, organic carbon

Fig. 1

The proportion of soil water-stable aggregate composition in each phase Error bars represent standard errors. Different lowercase letters indicate significant differences between treatments (P<0.05)"

Table 1

Soil aggregate stability under different incubation periods"

培养时间 Incubation time (d) 处理Treatment MWD (mm) GMD (mm) R0.25 (%)
0 CT 0.26±0.00b 0.13±0.00b 14.34±0.46b
NT 0.43±0.01a 0.17±0.01a 16.28±0.42a
15 CT 0.24±0.00d 0.11±0.00c 13.12±0.16d
NT 0.32±0.00c 0.15±0.00b 21.77±0.65c
CTS 0.67±0.03a 0.28±0.01a 47.48±1.85a
NTS 0.60±0.00b 0.27±0.01a 44.12±0.16b
30 CT 0.24±0.00d 0.12±0.00d 11.85±0.25d
NT 0.33±0.00c 0.16±0.00c 20.36±0.19c
CTS 0.66±0.01b 0.30±0.01b 44.35±0.54b
NTS 0.72±0.01a 0.35±0.01a 50.62±0.67a
60 CT 0.24±0.00d 0.13±0.00d 12.30±0.31d
NT 0.33±0.01c 0.17±0.00c 20.62±1.10c
CTS 0.64±0.00a 0.34±0.00a 48.07±0.08a
NTS 0.60±0.01b 0.32±0.00b 45.92±0.62b
90 CT 0.23±0.00c 0.12±0.00d 12.04±0.10c
NT 0.35±0.01b 0.18±0.00c 22.74±0.89b
CTS 0.64±0.00a 0.35±0.00b 49.40±0.59a
NTS 0.66±0.01a 0.36±0.01a 50.93±0.63a
180 CT 0.26±0.00d 0.14±0.00d 13.43±0.44d
NT 0.39±0.01c 0.20±0.01c 25.84±0.87c
CTS 0.60±0.01b 0.32±0.00b 45.03±0.51b
NTS 0.66±0.00a 0.36±0.00a 50.61±0.42a

Fig. 2

Soil organic carbon content in aggregate Error bars represent standard errors. Different lowercase letters indicate significant differences between treatments (P<0.05)"

Fig. 3

Contributing rates of organic carbon in aggregate to soil organic carbon Error bars represent standard errors. Different uppercase letters indicate significant differences between aggregates and different lowercase letters indicate significant differences between treatments (P<0.05)"

Table 2

The increment of aggregate organic carbon contribution rate (W, %), aggregates distribution (P, %) and aggregate organic carbon content (OC, g C·kg-1 aggregate) in added straw treatment soil compared with unprocessed soil"

培养时间
Incubation time
处理
Treatment
>2000 μm 2000—250 μm 250—53 μm <53 μm
W P OC W P OC W P OC W P OC
15 d CTS 2.2 2.7 6.7 17.7 30.5 -26.1 -20.7 -24.2 1.9 -9.6 -8.9 -3.1
NTS -1.4 -0.7 2.0 15.1 19.6 10.0 -8.3 -14.0 9.5 -5.7 -4.8 -0.2
30 d CTS 3.4 3.1 7.4 26.2 26.9 -25.9 -11.4 -18.0 1.7 -8.7 -12.0 -1.8
NTS -0.2 0.9 -2.6 11.8 24.4 -4.1 -12.7 -15.2 8.4 -8.7 -10.2 -0.3
60 d CTS 1.1 0.9 4.3 27.0 32.8 -28.2 -6.5 -16.9 2.5 -11.0 -16.8 -2.3
NTS -2.1 -1.5 -0.7 17.4 22.1 -4.3 -2.2 -8.8 9.6 -8.1 -11.8 1.4
90 d CTS 0.3 0.3 1.5 28.9 34.7 -31.2 -12.5 -18.3 1.2 -11.8 -16.8 -3.1
NTS -2.1 -1.4 -5.0 21.2 27.0 -5.4 -7.0 -12.5 8.3 -9.3 -13.1 -0.4
180 d CTS 0.7 0.5 16.5 26.5 30.2 -26.8 -4.9 -13.5 9.6 -11.1 -17.2 1.1
NTS -1.8 -1.1 -1.0 20.0 26.4 -5.9 -6.5 -11.0 7.5 -9.8 -14.3 0.0
[1] ZHU G Y, SHANGGUAN Z P, DENG L . Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena, 2017,149:253-260.
doi: 10.1016/j.catena.2016.10.004
[2] 白文娟, 徐华勤, 章家恩 . 不同培肥措施对土壤团聚体中微生物特性的影响. 生态环境学报, 2018(1):24-30.
BAI W J, XU H Q, ZHANG J E . Effects of different manure application on the soil microbial biomass properties within different soil aggregates. Ecology and Environmental Sciences, 2018(1):24-30. (in Chinese)
[3] SUI Y Y, JIAO X G, LIU X B, ZHANG X Y, DING G W . Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols. Canadian Journal of Soil Science, 2012,92(3):551-557.
doi: 10.4141/cjss2010-005
[4] 徐国鑫, 王子芳, 高明, 田冬, 黄容, 刘江, 黎嘉成 . 秸秆与生物炭还田对土壤团聚体及固碳特征的影响. 环境科学, 2018,39(1):355-362.
XU G X, WANG Z F, GAO M, TIAN D, HUANG R, LIU J, LI J C . Effects of straw and biochar return in soil on soil aggregate and carbon sequestration. Environmental Science, 2018,39(1):355-362. (in Chinese)
[5] GAO W D, ZHOU T Z, REN T S . Conversion from conventional to no tillage alters thermal stability of organic matter in soil aggregates. Soil Science Society of America Journal, 2015,21(6):1455-1464.
[6] OU H P, LIU X Y, CHEN Q S, HUANG Y F, HE M J, TAN H W, XU F L, LI Y R, GU M H . Water-stable aggregates and associated carbon in a subtropical, rice soil under variable tillage. Revista Brasileira De Ciêncin Solo, 2016,40:e0150145.
[7] BENBI D K, SINGH P, TOOR A S, VERMA G . Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system. Communications in Soil Science & Plant Analysis, 2016,47(15):1828-1844.
[8] 王秀娟, 解占军, 董环, 赵颖, 刘慧屿, 娄春荣 . 秸秆还田对玉米产量和土壤团聚体组成及有机碳分布的影响. 玉米科学, 2018(1):108-115.
WANG X J, XIE Z J, DONG H, ZHAO Y, LIU H Y, LOU C R . Effects of straw returning on yield and soil aggregates composition and organic carbon distribution. Journal of Maize Sciences, 2018(1):108-115. (in Chinese)
[9] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫 . 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018,24(1):1-21.
SONG D L, HOU S P, WANG X B, LIANG G Q, ZHOU W . Nutrient resource quantity of crop straw and its potential of substituting. Journal of Plant Nutrition and Fertilizers, 2018,24(1):1-21. (in Chinese)
[10] 于维水, 李桂花, 王碧胜, 武红亮, 赵雅雯, 孟繁华, 卢昌艾 . 不同施肥制度下我国东部典型土壤易分解与耐分解碳的组分特征. 植物营养与肥料学报, 2015,21(3):675-683.
doi: 10.11674/zwyf.2015.0314
YU W S, LI G H, WANG B S, WU H L, ZHAO Y W, MENG F H, LU C A . Component characteristics of soil labile and recalcitrant carbon under long-term different fertilization systems in eastern China. Journal of Plant Nutrition and Fertilizers, 2015,21(3):675-683. (in Chinese)
doi: 10.11674/zwyf.2015.0314
[11] YANG Z P, ZHENG S X, NIE J, LIAO Y L, XIE J . Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. Journal of Integrative Agriculture, 2014,13(8):1772-1781.
doi: 10.1016/S2095-3119(13)60565-1
[12] YAZDANPANAH N, MAHMOODABADI M, CERDA A . The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma, 2016,266:58-65.
doi: 10.1016/j.geoderma.2015.11.032
[13] ZHENG L, WU W L, WEI Y P, HU K L . Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China. Soil & Tillage Research, 2015,145:78-86.
[14] 王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬 . 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B . Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization. Journal of Plant Nutrition and Fertilizers, 2015,21(6):1455-1464. (in Chinese)
doi: 10.11674/zwyf.2015.0610
[15] 于博, 于晓芳, 高聚林, 胡树平, 孙继颖, 王志刚, 高鑫, 朱文新 . 玉米秸秆全量深翻还田对高产田土壤结构的影响. 中国生态农业学报, 2018,26(4):584-592.
YU B, YU X F, GAO J L, HU S P, SUN J Y, WANG Z G, GAO X, ZHU W X . Effects of deep tillage and straw return on soil structure of high-yield spring maize field. Chinese Journal of Eco-Agriculture, 2018,26(4):584-592. (in Chinese)
[16] 薛斌, 黄丽, 鲁剑巍, 李小坤, 殷志遥, 刘智杰, 陈涛 . 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018,32(1):182-189.
XUE B, HUANG L, LU J W, LI X K, YIN Z Y, LIU Z J, CHEN T . Effect of continuous straw returning and no-tillage on soil aggregates and organic carbon. Journal of Soil and Water Conservation, 2018,32(1):182-189. (in Chinese)
[17] WANG X B, DAI K, ZHANG D C, ZHANG X M, WANG Y, ZHAO Q S, CAI D X, HOOGMOED W B, OENEMA O . Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Research, 2011,120(1):47-57.
[18] 刘哲, 韩霁昌, 孙增慧, 余正洪, 张卫华, 高红贝 . 外源新碳对红壤团聚体及有机碳分布和稳定性的影响. 环境科学学报, 2017,37(6):2351-2359.
LIU Z, HAN J C, SUN Z H, YU Z H, ZHANG W H, GAO H B . Effects of fresh carbon on distribution and stability of aggregates and organic carbon in red soil. Acta Scientiae Circumstantiae, 2017,37(6):2351-2359. (in Chinese)
[19] 谢柠桧, 安婷婷, 李双异, 孙良杰, 裴久渤, 丁凡, 徐英德, 付时丰, 高晓丹, 汪景宽 . 外源新碳在不同肥力土壤中的分配与固定. 土壤学报, 2016,53(4):942-950.
XIE N K, AN T T, LI S Y, SUN L J, PEI J B, GONG F, XU Y D, FU S F, GAO X D, WANG J K . Distribution and sequestration of exogenous new carbon in soils different in fertility. Acta Pedologica Sinica, 2016,53(4):942-950. (in Chinese)
[20] 孙元宏, 高雪莹, 赵兴敏, 隋标, 王鸿斌, 赵兰坡 . 添加玉米秸秆对白浆土重组有机碳及团聚体组成的影响. 土壤学报, 2017,54(4):1009-1017.
SUN Y H, GAO X Y, ZHAO X M, SUI B, WANG H B, ZHAO L P . Effects of corn stalk incorporation on organic carbon of heavy fraction and composition of soil aggregates in Albic Soil. Acta Pedologica Sinica, 2017,54(4):1009-1017. (in Chinese)
[21] 侯晓娜, 李慧, 朱刘兵, 韩燕来, 唐政, 李忠芳, 谭金芳, 张水清 . 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响. 中国农业科学, 2015,48(4):705-712.
HOU X N, LI H, ZHU L B, HAN Y L, TANG Z, LI Z F, TAN J F, ZHANG S Q . Effects of biochar and straw additions on lime concretion Black Soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015,48(4):705-712. (in Chinese)
[22] 王燕, 王小彬, 刘爽, 梁二, 蔡典雄 . 保护性耕作及其对土壤有机碳的影响. 中国生态农业学报, 2008(3):766-771.
WANG Y, WANG X B, LIU S, LIANG E, CAI D X . Conservation tillage and its effect on soil organic carbon.Chinese Journal of Eco-Agriculture, 2008(3):766-771. (in Chinese)
[23] 仇建飞, 窦森, 邵晨, 李明敏, 安丰华 . 添加玉米秸秆培养对土壤团聚体胡敏酸数量和结构特征的影响. 土壤学报, 2011,48(4):781-787.
QIU J F, DOU S, SHAO C, LI M M, AN F H . Effects of corn stalk application on quantity and structural characteristics of humus acid in soil aggregates. Acta Pedologica Sinica, 2011,48(4):781-787. (in Chinese)
[24] 关松, 窦森, 胡永哲, 魏博薇 . 添加玉米秸秆对黑土团聚体碳氮分布的影响. 水土保持学报, 2010,24(4):187-191.
GUAN S, DOU S, HU Y Z, WEI B W . Effects of application of corn stalk on distribution of C and N in black soil aggregates. Journal of Soil and Water Conservation, 2010,24(4):187-191. (in Chinese)
[25] SIX J, ELLIOTT E T, PAUSTIAN K . Soil macroaggregate turnover and microaggregate formation: mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 2000,32(14):2099-2103.
[26] 李涛, 何春娥, 葛晓颖, 欧阳竹 . 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响. 中国生态农业学报, 2016,24(12):1633-1642.
LI T, HE Y E, GE X Y, OUYANG Z, Responses of soil mineral N contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1633-1642. (in Chinese)
[27] ZHANG X F, XIN X L, ZHU A N, YANG W L, ZHANG J B, DING S J, MU L, SHAO L L . Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil & Tillage Research, 2018,178:99-107.
[28] ZHANG X F, XIN X L, ZHU A N, ZHANG J B, YANG W L . Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 2017,156:176-183.
doi: 10.1016/j.catena.2017.04.012
[29] 顾鑫, 安婷婷, 李双异, 李慧, 汪景宽 . δ 13C法研究秸秆添加对棕壤团聚体有机碳的影响 . 水土保持学报, 2014,28(2):243-247.
GU X, AN T T, LI S Y, LI H, WANG J K . Effects of application of straw on organic carbon in brown soil aggregates by δ 13C method . Journal of Soil and Water Conservation, 2014,28(2):243-247. (in Chinese)
[30] 吕元春, 薛丽佳, 尹云锋, 高人, 马红亮, 杨玉盛 . 外源新碳在不同类型土壤团聚体中的分配规律. 土壤学报, 2013,50(3):534-539.
LV Y C, XU L J, YIN Y F, GAO R, MA H L, YANG Y S . Distribution of fresh carbon in aggregate fractions of different soil types. Acta Pedologica Sinica, 2013,50(3):534-539. (in Chinese)
[31] SARKER J R, SINGH B P, COWIE A L, FANG Y Y, COLLINS D, DOUGHERTY W J, SINGH B K . Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues. Soil Biology & Biochemistry, 2018,116:22-38.
[32] 郝翔翔, 杨春葆, 苑亚茹, 韩晓增, 李禄军, 江恒 . 连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响. 中国农学通报, 2013,29(35):263-269.
HAO X X, YANG C B, YUAN Y R, HAN X Z, LI L J, JIANG H . Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil. Chinese Agricultural Science Bulletin, 2013,29(35):263-269. (in Chinese)
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[3] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[4] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[7] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[8] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[9] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[10] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[11] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[12] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[13] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
[14] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[15] Dan WEI,ShanShan CAI,Yan LI,Liang JIN,Wei WANG,YuMei LI,Yang BAI,Yu HU. The Response of Water-Soluble Organic Carbon to Organic Material Applications in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1180-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!