Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1136-1149.doi: 10.3864/j.issn.0578-1752.2019.07.002

Special Issue: SPECIAL FOCUS ON GRAPE RESEARCH

• SPECIAL FOCUS ON GRAPE RESEARCH • Previous Articles     Next Articles

The Accumulation of Monoterpenes and the Expression of Its Biosynthesis Related Genes in ‘Aishen Meigui’ Grape Berries Cultivated in Different Trellis Systems During Ripening Stage

WANG HuiLing1,WANG XiaoYue2,YAN AiLing3,SUN Lei1,ZHANG GuoJun1,REN JianCheng1,XU HaiYing1()   

  1. 1 Beijing Academy of Forestry and Pomology Sciences, Beijing 100093
    2 Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100097
    3 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097
  • Received:2018-09-14 Accepted:2019-01-11 Online:2019-04-01 Published:2019-04-04
  • Contact: HaiYing XU E-mail:haiyingxu63@sina.com

Abstract:

【Objective】 The effects of two trellis systems on the synthesis of monoterpenes and the expression of its biosynthesis related genes during the maturity of grape berries were studied, in order to reveal the relationship between gene transcription and monoterpenoids accumulation and provide a theoretical basis for trellis selection in production and improvement of aroma quality of grape fruits. 【Method】 The grape berries of Aishen Meigui cultivated in the T and V trellis were used as materials. The berry samples were collected from the beginning of the color change period until the fruit ripened completely. Total soluble solid and titratable acid content in fruits were detected. The changes of monoterpene components and contents in fruits were determined by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (SPEME-GC-MS) in two consecutive years. Additionally, the expression of key enzyme genes in monoterpene biosynthesis pathway including 1-deoxy-D-xylulose 5-phosphate synthase genes (DXS1 and DXS3), 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene (DXR), isopentenyl pyrophosphate reductase gene (HDR), linalool synthase gene (Liner syn) and terpineol synthase gene (Terp syn) were analyzed by real-time fluorescence quantitative analysis (qPCR).【Result】During grape berries maturity, the total soluble solids content increased gradually, while titratable acid content decreased gradually. The total soluble solids content of the Aishen Meigui grape cultivated in T trellis was significantly higher than that of grape cultivated in V trellis at ripening stage, and there was no significant difference in titratable acid content. 27 and 28 monoterpene compounds were detected in the grape berries of Aishen Meigui in 2016 and 2017, respectively. The main monoterpene components changed during berry maturity and were different in grape berries cultivated in T and V trellis. As the results shown, linalool, limonene, α-Terpineol, β-cis-Ocimene and geraniol were the main monoterpenes in grape berries cultivated in T trellis, while abundant linalool, α-Terpineol, limonene, nerol oxide and β-cis-Ocimene were detected in the berries cultivated in V trellis, and the content of linalool was the highest among them. At the maturity stage, total monoterpene content of T trellis grape berries reached 108.18 μg?L -1, which was 1.9 times higher than that of V trellis berries in 2016. While in 2017, total monoterpene content of T trellis grape berries reached 403.24 μg?L -1, which was 1.5 times higher than that of V trellis berries. The content of most monoterpene compounds in T trellis fruits were significantly higher than that in V trellis fruits at maturity. During grape berry development, the changes of monoterpenes accumulation in grape berries cultivated in both two trellis systems exhibited two patterns. Most of the monoterpenes including linalool, geraniol, nerol and α-Terpineol followed the first pattern: the content of monoterpenes reached the peak at maturity. But differences were observed between trellises. In the T trellis fruits, the content of compounds, such as (E,Z)-Allo-Ocimene, β-cis-Ocimene, limonene and α-terpineol, firstly decreased, and then increased sharply at 57 days after flowering, followed by a reduction during the later part of ripening stage (76 days after flowering). However, in V trellis berries, the content of these compounds increased gradually during fruit ripening, peaked at 48 days after flowering, and then decreased to the lowest level. The expression of monoterpene synthesis pathway genes (DXS1, DXS3, DXR, DHR, Liner syn and Terp syn) increased with berry ripening, of them, the changes of DXS3, HDR, Liner syn and Terp syn expression were corresponding well to the total monoterpenes accumulation patterns in grape berries cultivated in distinct trellis systems during ripening. The expression of each gene in T-trellis grape berries was significantly higher than that in V-trellis berries, which was consistent with the accumulation pattern of different monoterpenes. 【Conclusion】More accumulation of monoterpenes were detected in Aishen Meigui grape berries cultivated in T trellis. The synthesis of monoterpenes was highly correlated with the expression level of several key genes in the synthesis pathway.

Key words: grape, trellis systems, muscat flavor, monoterpenes

Table 1

Analysis of titratable acid and total soluble solid content in grape berries cultivated in different trellis systems during maturity"

盛花后天数 Days after full blossom (d) 2016年 2017年
可溶性固形物
Soluble solids (%)
可滴定酸
Titratable acid (g·L-1)
可溶性固形物
Soluble solids (%)
可滴定酸
Titratable acid (g·L-1)
T V T V T V T V
30 10.70±1.20a 10.54±0.87a 6.90±0.23a 6.35±0.32b 10.31±0.61a 10.42±0.53a 6.79±0.12a 6.45±0.32a
39 14.01±0.21b 14.69±0.86a 6.18±0.10a 6.20±0.15a 13.71±0.12b 14.03±0.21a 6.05±0.15a 6.13±0.04a
48 14.78±0.34b 15.72±0.53a 5.31±0.41a 4.06±0.02b 15.22±0.48b 15.81±0.57a 4.34±0.09a 4.16±0.14b
57 15.38±0.38b 16.01±0.65a 3.39±0.13a 3.26±0.17a 16.03±0.86b 16.14±0.58a 3.34±0.21a 3.48±0.04a
67 16.12±1.02a 16.03±0.21b 3.20±0.20a 3.23±0.45a 16.24±0.49a 16.03±0.12b 3.09±0.13a 3.15±0.11a
76 16.67±0.36a 16.05±0.12b 3.24±0.04a 3.20±0.25a - - -

Table 2

Analysis of monoterpenes content in grape berries cultivated in different trellis systems during maturity (μg?L-1)"

化合物
Compound
年份
Year
架式Trellis 盛花后天数 Days after full blossom (d)
30 39 48 57 67 76
β-月桂烯
β-Myrcene

2016 T
V
0.25±0.02a
0.24±0.03a
0.86±0.06b
4.71±0.06a
0.22±0.01b
0.34±0.02a
1.28±0.09a
0.26±0.02b
1.32±0.12a
0.44±0.07b
0.45±0.04a
0.16±0.00b
2017 T
V
0.95±0.01b 1.02±0.01b 1.99±0.10b 10.30±0.31a 7.21±0.06a -
1.17±0.40a 1.24±0.34a 3.35±0.11a 1.56±0.09b 1.17±0.02b -
柠檬烯
Limonene
2016 T
V
8.30±0.04a
3.69±0.11b
7.31±0.00a
3.71±0.11b
1.86±0.01b
5.86±1.04a
9.08±0.15a
2.33±0.12b
11.03±0.19a
1.68±0.08b
7.73±0.14a
2.56±0.07b
2017 T
V
5.16±0.10a 5.08±0.12a 5.42±0.04b 17.57±0.31a 16.98±0.32a -
3.43±0.12b 5.20±0.09a 9.18±0.51a 6.50±0.20b 3.35±0.07b -
水芹烯
Phellandrene

2016 T
V
1.95±0.06a
0.87±0.02b
2.07±0.01a
0.77±0.02b
0.56±0.10b
1.11±0.07a
1.08±0.11a
0.53±0.01b
1.91±0.07a
0.47±0.08b
1.49±0.05a
0.56±0.03b
2017 T
V
1.72±0.01a 3.40±0.01a 0.74±0.02b 1.56±0.05a 1.82±0.02a -
0.79±0.01b 0.73±0.08b 1.10±0.06a 0.73±0.01b 0.56±0.02b -
β-trans-罗勒烯
β-trans-Ocimene
2016 T
V
3.08±0.00a
1.17±0.08b
2.61±0.03a
1.21±0.01b
0.71±0.00b
1.96±0.34a
3.68±0.02a
0.83±0.10b
4.41±0.03a
0.57±0.05b
3.30±0.03a
1.00±0.03b
2017 T
V
3.07±0.01a 2.96±0.03a 3.99±0.22b 9.24±0.26a 8.89±0.06a -
2.73±0.04b 2.97±0.41a 6.15±0.35a 3.07±0.06b 2.64±0.12b -
γ-松油烯
γ-Terpinen

2016 T
V
5.26±0.02a
3.10±0.16b
3.84±0.10a
1.41±0.08b
0.91±0.03a
0.87±0.15b
1.34±0.03a
0.30±0.01b
1.93±0.05a
0.39±0.18b
0.87±0.03a
0.32±0.01b
2017 T
V
5.79±0.61a 3.74±0.04a 2.17±0.07a 2.06±0.40a 1.56±0.07a -
2.59±0.03b 2.19±0.21b 1.53±0.06b 1.14±0.07b 1.08±0.12b -
β-cis-罗勒烯
β-cis-Ocimene

2016 T
V
4.22±0.00a
2.52±0.17b
3.95±0.04a
2.60±0.04b
1.50±0.01b
3.60±0.34a
6.51±0.05a
1.86±0.12b
8.44±0.16a
1.14±0.09b
5.44±0.14a
2.18±0.00b
2017 T
V
6.36±0.21a 5.07±0.11a 3.54±0.01b 18.94±0.03a 19.06±0.15a -
3.81±0.02b 4.01±0.25b 8.60±0.31a 3.92±0.20b 0.98±0.31b -
异松油烯
Terpinolen

2016 T
V
5.15±0.00a
2.71±0.13b
4.57±0.00a
2.32±0.10b
1.06±0.04b
3.47±0.96a
4.94±0.05a
0.98±0.06b
5.50±0.06a
0.73±0.18b
4.50±0.04a
1.20±0.10b
2017 T
V
7.32±0.02a 6.67±0.30a 6.12±0.03b 7.31±0.41a 9.94±0.08a -
4.32±0.40b 4.33±0.13b 7.79±0.16a 3.12±0.04b 1.83±0.17b -
cis-氧化玫瑰
cis Rose oxide

2016 T
V
0.35±0.01b
0.80±0.02a
tr
0.25±0.01
tr
0.21±0.02
0.30±0.01b
0.46±0.00a
0.23±0.00
tr
tr
tr
2017 T
V
0.64±0.01a 0.68±0.01b 0.73±0.13b 0.85±0.02a 0.59±0.12a -
0.68±0.01a 0.82±0.01a 0.82±0.03a 0.70±0.03b 0.36±0.04b -
trans-氧化玫瑰
trans-Rose oxide
2016 T
V
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
2017 T
V
tr tr 0.62±0.02a 2.93±0.07a 0.61±0.01 -
tr tr 0.64±0.01a 0.56±0.04b tr -
别罗勒烯
Allo-Ocimene

2016 T
V
3.16±0.01a
1.12±0.06b
2.54±0.04a
1.10±0.02b
0.70±0.03b
1.85±0.33a
3.79±0.02a
0.87±0.01b
4.48±0.07a
0.55±0.03b
3.24±0.04a
0.89±0.01b
2017 T
V
2.98±0.01a 2.86±0.30a 2.86±0.06b 5.36±0.06a 6.12±0.09a -
2.62±0.04b 2.85±0.03a 3.66±0.16a 1.37±0.02b 0.73±0.02b -
化合物
Compound
年份
Year
架式Trellis 盛花后天数 Days after full blossom (d)
30 39 48 57 67 76
(E,Z)-别罗勒烯
(E,Z)-Allo-
Ocimene
2016 T
V
0.55±0.02a
0.37±0.01b
0.57±0.02a
0.36±0.01b
0.35±0.03b
0.58±0.08a
1.27±0.03a
0.48±0.12b
1.47±0.07a
0.26±0.03b
0.82±0.01a
0.32±0.01b
2017 T
V
0.62±0.10b 0.63±0.03a 0.74±0.04b 1.42±0.02a 1.82±0.08a -
0.69±0.01a 0.64±0.01a 0.81±0.09a 0.64±0.04b 0.41±0.02b -
cis-呋喃型氧化里那醇
cis-furan linalool oxide
2016 T
V
9.31±0.01a
2.50±0.04b
5.03±0.13a
2.15±0.14b
1.46±0.05b
2.66±0.00a
2.66±0.10a
1.32±0.05b
3.37±0.16a
1.09±0.03b
1.81±0.07a
1.18±0.00a
2017 T
V
4.92±0.07a 2.65±0.01a 1.23±0.31b 3.19±0.02a 4.00±0.22a -
1.43±0.28b 1.80±0.17b 2.71±0.50a 1.32±0.15b 0.30±0.07b -
trans-呋喃型氧化里那醇
trans-furan linalool oxide
2016 T
V
3.49±0.11a
1.73±0.03b
2.32±0.05a
1.52±0.03b
1.14±0.01b
1.47±0.03a
1.68±0.04a
1.19±0.02b
1.84±0.04a
1.05±0.01b
1.23±0.02a
1.01±0.00b
2017 T
V
1.76±0.04a 0.79±0.09b 0.35±0.08b 1.09±0.49a 1.83±0.07a -
1.41±0.05b 1.14±0.31a 0.58±0.12a 0.53±0.01b 0.23±0.04b -
橙花醚
Nerol oxide

2016 T
V
10.02±0.17a
5.92±0.05b
10.18±0.30a
8.98±0.55b
8.86±0.14a
3.09±2.40b
7.05±0.94b
11.79±0.26a
3.53±1.13a
3.38±0.60a
3.65±0.02a
2.31±0.07b
2017 T
V
25.16±0.09a 23.70±1.74a 17.78±0.62b 16.86±0.73a 10.41±0.16a -
14.15±0.53b 17.16±0.73b 21.77±0.22a 15.12±0.12b 8.97±0.21b -
香茅醛
Citronellal

2016 T
V
0.81±0.07a
0.42±0.05b
0.59±0.06a
0.50±0.01a
0.34±0.01b
0.65±0.04a
0.77±0.04a
0.24±0.10b
0.99±0.04a
0.10±0.01b
0.60±0.06a
0.28±0.04b
2017 T
V
- - - - - -
- - - - - -
里那醇
Linalool

2016 T
V
3.63±0.04b
5.58±0.04a
8.33±0.12a
6.79±0.35b
4.44±0.13b
14.62±0.77a
41.67±0.94a
10.48±0.32b
19.29±1.00a
4.23±0.55b
33.60±0.70a
11.12±0.26b
2017 T
V
8.38±1.12a 15.22±0.15b 82.89±3.07a 96.64±2.25a 43.56±0.75a -
7.01±0.05b 15.26±0.37a 71.08±1.03b 67.56±0.54b 8.90±0.43b -
4-松油烯醇
4-Terpineol

2016 T
V
2.95±0.01a
0.88±0.03b
2.72±0.00a
0.52±0.05b
0.39±0.03b
0.47±0.01a
0.81±0.06a
0.22±0.01b
1.24±0.02b
3.08±0.23a
0.51±0.01a
0.16±0.01b
2017 T
V
2.91±0.09a 3.23±0.04a 2.89±0.07a 2.56±0.01a 1.98±0.02a -
0.90±0.02b 0.87±0.01b 0.83±0.02b 0.72±0.02b 0.70±0.02b -
橙花醛
Neral

2016 T
V
0.67±0.01a
0.27±0.01b
0.34±0.02a
0.33±0.05b
0.13±0.01b
0.60±0.05a
0.49±0.06b
0.59±0.04a
0.67±0.08a
0.14±0.03b
0.40±0.03a
0.15±0.08b
2017 T
V
0.87±0.03a 0.75±0.01a 0.63±0.01b 0.65±0.05b 0.84±0.01a -
0.53±0.01b 0.61±0.02b 1.01±0.10a 0.83±0.01a 0.62±0.03b -
α-衣兰油烯
α-Muurolene

2016 T
V
0.22±0.00a
0.10±0.00b
0.09±0.00a
0.07±0.00b
0.07±0.00a
0.07±0.02a
0.08±0.01b
0.09±0.01a
0.09±0.00a
0.08±0.00b
0.07±0.02b
0.08±0.01a
2017 T 0.60±0.01a 0.54±0.01b 0.55±0.01b 0.58±0.02a 0.52±0.05b -
V 0.59±0.01a 0.59±0.01a 0.60±0.01a 0.58±0.02a 0.60±0.01a -
α-萜品醇
α-Terpineol

2016 T
V
5.55±0.11a
4.49±0.02b
5.28±0.01a
4.59±0.05b
4.34±0.01b
4.99±0.11a
6.53±0.19a
4.36±0.09b
7.96±0.15a
2.80±0.97b
5.78±0.13a
4.42±0.02b
2017 T 5.40±0.04a 9.23±1.07a 6.65±0.57b 22.29±0.11a 19.89±0.62a -
V 3.24±0.23b 6.41±0.78b 14.57±0.57a 3.03±0.03b 1.81±0.14b -
化合物
Compound
年份
Year
架式Trellis 盛花后天数 Days after full blossom (d)
30 39 48 57 67 76
香叶醛
Geranial

2016 T
V
0.22±0.06b
0.31±0.09a
0.44±0.02b
0.53±0.03a
0.92±0.04b
1.08±0.11a
2.03±0.85a
1.20±0.21b
2.68±0.05a
0.53±0.09b
0.73±0.02a
0.35±0.02b
2017 T 0.63±0.01a 0.74±0.01a 0.87±0.02b 1.68±0.01a 2.13±0.13a -
V 0.62±0.02a 0.65±0.01b 0.89±0.01a 1.20±0.10b 0.63±0.02b -
β-香茅醇
β-Citronellol

2016 T 1.00±0.05b
3.58±0.03a
3.61±0.02a
3.65±0.04a
3.59±0.03a
2.59±0.78b
3.60±0.05a
0.53±0.09b
2.54±0.76a
0.05±0.01b
0.61±0.03a
0.23±0.01b
V
2017 T 2.59±0.15a 4.54±0.06a 5.56±0.06a 7.58±0.01a 3.70±0.11a -
V 2.49±0.04b 3.51±0.02b 4.61±0.04b 2.40±0.01b 0.64±0.01b -
γ-香叶醇
γ-Geraniol

2016 T
V
0.15±0.00a
0.06±0.01b
0.14±0.03a
0.08±0.01b
0.10±0.02a
0.08±0.02b
tr
tr
tr
tr
tr
tr
2017 T 0.54±0.01a 0.52±0.03a 0.53±0.04 tr tr -
V 0.20±0.03b 0.21±0.01b tr tr tr -
橙花醇
Nerol

2016 T
V
0.15±0.01b
0.24±0.00a
0.32±0.02a
0.29±0.04b
0.27±0.01b
0.77±0.07a
1.77±0.13a
0.45±0.07b
3.58±0.01a
0.25±0.05b
1.06±0.08a
0.25±0.04b
2017 T 2.09±0.14b 3.43±0.07b 21.47±2.78b 82.82±8.42a 65.23±0.75a -
V 2.89±1.17a 4.62±0.35a 38.38±3.60a 19.56±0.54b 8.99±2.07b -
cis-异香叶醇
cis-Isogeraniol

2016 T
V
0.17±0.16
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
nd
2017 T tr 0.25±0.08 tr tr tr -
V tr tr tr tr tr -
trans-异香叶醇
trans-Isogeraniol
2016 T
V
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
nd
nd
2017 T 0.13±0.03 tr tr tr tr tr
V tr tr tr tr tr tr
香叶醇
Geraniol

2016 T
V
0.62±0.05b
1.06±0.01a
3.25±1.13b
4.76±0.01a
4.91±0.02a
4.92±0.02a
5.22±0.03a
1.33±0.20b
5.62±0.02a
0.67±0.10b
5.01±0.03a
1.07±0.04b
2017 T 3.89±0.19b 12.56±0.04b 58.97±3.42a 81.60±4.67a 82.14±0.86a -
V 7.31±0.10a 20.40±0.55a 54.27±6.01b 21.46±3.07b 17.59±2.26b -
香叶酸
Geranic acid

2016 T
V
0.29±0.02a
0.17±0.02b
0.51±0.20a
0.33±0.04b
0.81±0.30a
0.51±0.16b
5.22±0.03a
1.33±0.20b
0.39±0.14
tr
0.24±0.01a
0.18±0.03b
2017 T 0.12±0.01b 2.98±0.12b 6.12±0.22a 8.12±0.56a 1.99±0.12a -
V 0.23±0.02a 3.53±0.10a 5.96±0.16b 6.32±0.08b 1.49±0.04b -
总量
Total

2016 T
V
71.50±0.09a
43.87±0.89b
71.40±2.69a
53.52±1.32b
39.66±0.23b
58.38±8.38a
108.18±3.15a
43.12±1.11b
94.52±4.29a
23.61±3.55b
83.08±0.46a
31.97±0.63b
2017 T 94.63±1.23a 113.21±3.42a 235.43±0.41b 403.24±2.54a 312.82±4.12a -
V 65.86±3.11b 100.46±4.10b 260.91±0.91a 163.97±0.87b 64.61±5.16b -

Fig. 1

Hierarchical cluster analysis of monoterpenes in grape berries cultivated in different trellis systems during maturity"

Fig. 2

Principal analysis of monoterpenes in grape berries cultivated in different trellis systems during maturity"

Fig. 3

The selected compound based on VIP score in grape berries cultivated in different trellis systems during maturity"

Fig. 4

Changes of monoterpene biosynthesis pathway genes expression in grape berries cultivated in different trellis systems during maturity"

[1] 涂崔, 潘秋红, 朱保庆, 吴玉文, 王志群, 段长青 . 葡萄与葡萄酒单萜化合物的研究进展. 园艺学报, 2011,38(7):1397-1406.
TU C, PAN Q H, ZHU B Q, WU Y W, WANG Z Q, DUAN C Q . Progress in study of monoterpene compounds in grape and wine. Acta Horticulturae Sinica, 2011,38(7):1397-1406. (in Chinese)
[2] XU X Q, CHENG G, DUAN L L, JIANG R, PAN Q H, DUAN C Q, WANG J . Effect of training systems on fatty acids and their derived volatiles in cabernet sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chemistry, 2015,181:198-206.
doi: 10.1016/j.foodchem.2015.02.082 pmid: 25794740
[3] XU H Y, SUN L, ZHANG G J, YAN A L . ‘Aishenmeigui’: An extremely early maturing seedless grape with muscat flavor. Vitis: Journal of Grapevine Research, 2014,53(1):53.
[4] MARTIN D M, CHIANG A, LUND S T, BOHLMANN J . Biosynthesis of wine aroma: Transcript profiles of hydroxyl methyl butenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012,236:919-929.
doi: 10.1007/s00425-012-1704-0 pmid: 22824963
[5] EI HADI M A, ZHANG F J, WU F F, ZHOU C H, TAO J . Advances in fruit aroma volatile research. Molecules, 2013,18(7):8200-8229.
doi: 10.3390/molecules18078200
[6] ZHANG E P, CHAI F M, ZHANG H H, LI S H, LIANG Z C, FAN P G . Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, 2017,237:379-389.
doi: 10.1016/j.foodchem.2017.05.127 pmid: 28764010
[7] FRIEDEL M, FROTSCHER J, NITSCH M, HOFMANN M, BOGS J, STOLL M, DIETRICH H . Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera l. cv. Riesling). Australian Journal of Grape & Wine Research, 2016,22(3):409-421.
doi: 10.1111/ajgw.12229
[8] SCHULTZ H R . Grape canopy structure, light microclimate and photosynthesis. 1. A two-dimensional model of the spatial distribution of surface area densities and leaf ages in two canopy systems. VITIS-Journal of Grapevine Research, 1995,34(4):211-215.
[9] 赵文东, 满丽婷, 孙凌俊, 高圣华, 赵海亮, 马丽, 郭修武 . 架式与负载量对晚红葡萄果实品质的影响. 中国农学通报, 2010,26(11):241-244.
ZHAO W D, MAN L T, SUN L J, GAO S H, ZHAO H L, MA L, GUO X W . Effects of different trellis and fruit load on the fruit quality of Red Globe Grape. Chinese Agricultural Science Bulletin, 2010,26(11):241-244. (in Chinese)
[10] 文旭, 边凤霞, 王富霞, 容新民 . 不同架式对四师67团酿酒葡萄生长发育和果实品质的影响. 安徽农业科学, 2015,43(33):60-61.
WEN X, BIAN F X, WANG F X, RONG X M . Effects of different tree form on the growth and fruit quality of wine grape at the Four Division 67 Regiment. Journal of Anhui Agricultural Science, 2015,43(33):60-61. (in Chinese)
[11] 刘笑宏, 孙永江, 孙红, 翟衡 . 不同叶幕类型对‘摩尔多瓦’葡萄果穗微域环境及果实品质的影响. 中国农业科学, 2016,49(21):4246-4254.
doi: 10.3864/j.issn.0578-1752.2016.21.019
LIU X H, SUN Y J, SUN H, ZHAI H . Effect of canopy types on the cluster micro-environment and fruit quality of the ‘Moldova' grapes. Scientia Agricultura Sinica, 2016,49(21):4246-4254. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.21.019
[12] 刘笑宏, 肖秋红, 孙永江, 杜远鹏, 翟衡 . 两种叶幕类型‘摩尔多瓦’葡萄套袋果实花色苷代谢的差异. 园艺学报, 2018,45(3):457-470.
LIU X H, XIAO Q H, SUN Y J, DU Y P, ZHAI H . Difference of bagged Moldova grapes anthocyanin metabolism for two trellis systems. Acta Horticulturae Sinica, 2018,45(3):457-470. (in Chinese)
[13] 赵新节, 孙玉霞, 刘波, 王晓, 束怀瑞 . 不同架式栽培的玫瑰香葡萄成熟期挥发性物质的变化. 园艺学报, 2005,32(1):87-90.
doi: 10.3321/j.issn:0513-353X.2005.01.019
ZHAO X J, SUN Y X, LIU B, WANG X, SHU H R . Changes of volatile compounds in ‘Muscat Hambourg’ for various trellis systems during maturity. Acta Horticulturae Sinica, 2005,32(1):87-90. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2005.01.019
[14] 商佳胤, 田淑芬, 李树海, 朱志强, 黄建全, 集贤, 王丹 . 玫瑰香葡萄Y型架与篱架叶幕层光照强度及果实品质的差异. 园艺学报, 2013,40(7):1349-1358.
SHANG J Y, TIAN S F, LI S H, ZHU Z Q, HUANG J Q, JI X, WANG D . Differences of leaf canopy of Y frame and vertical trellises on light intensity and qualities of Muscat Hamburg grape. Acta Horticulturae Sinica, 2013,40(7):1349-1358. (in Chinese)
[15] JI T, DAMI I E . Characterization of free flavor compounds in Traminette grape and their relationship to vineyard training system and location. Journal of Food Science, 2008,73(4):C262-C267.
doi: 10.1111/j.1750-3841.2008.00736.x
[16] FRAGASSO M, ANTONACCI D, PATI S, TUFARIELLO M, BAIANO A, FORLEO L R . Influence of training system on volatile and sensory profiles of Primitivo grapes and wines. American Journal of Enology and Viticulture, 2012. doi: 10.5344/ajev.2012.11074.
[17] WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H . Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015,8:1226.
[18] 孙磊, 朱保庆, 孙晓荣, 许晓青, 王晓玥, 张国军, 徐海英 . ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律. 中国农业科学, 2014,47(7):1379-1386.
doi: 10.3864/j.issn.0578-1752.2014.07.015
SUN L, ZHU B Q, SUN X R, XU X Q, WANG X Y, ZHANG G J, XU H Y . Terpenes biosynthesis related gene transcript profiles and terpenes accumulation of ‘Alexandria’ grape. Scientia Agricultura Sinica, 2014,47(7):1379-1386. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.07.015
[19] 陆贵锋, 黄凤珠, 廖慧茜, 彭宏祥, 秦献泉, 林玲, 李冬波, 李鸿莉, 徐宁, 朱建华 . 两种架形对酿酒葡萄凌丰生长及产量的影响. 南方农业学报, 2017,48(5):866-869.
doi: 10.3969/j.issn.2095-1191.2017.05.018
LU G F, HUANG F Z, LIAO H Q, PENG H X, QIN X Q, LIN L, LI D B, LI H L, XU N, ZHU J H . Effects of V and T trellis on growth and yield of wine grape variety. Journal of Southern Agriculture, 2017,48(5):866-869. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2017.05.018
[20] 张克坤, 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之 . ‘瑞都香玉’葡萄果实挥发性成分在果实发育过程中的变化. 中国农业科学, 2015,48(19):3965-3978.
doi: 10.3864/j.issn.0578-1752.2015.19.018
ZHANG K K, WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z . Evolution of volatile compounds during the berry development of ‘Ruidu Xiangyu’ grape. Scientia Agricultura Sinica, 2015,48(19):3965-3978. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.19.018
[21] 张明霞, 吴玉文, 段长青 . 葡萄与葡萄酒香气物质研究进展. 中国农业科学, 2008,41(7):2098-2104.
ZHANG M X, WU Y W, DUAN C Q . Progress in study of aromatic compounds in grape and wine. Scientia Agricultura Sinica, 2008,41(7):2098-2104. (in Chinese)
[22] RUIZ-GARCÍA L, HELLIN P, FLORES P, FENOLL J . Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chemistry . 2014,154:151-157.
doi: 10.1016/j.foodchem.2014.01.005 pmid: 24518327
[23] 王继源, 冯娇, 侯旭东, 陶建敏 . 不同果袋对‘阳光玫瑰’葡萄香气组分及合成相关基因表达的影响. 果树学报, 2017,34(1):1-11.
doi: 10.13925/j.cnki.gsxb.20160195
WANG J Y, FENG J, HOU X D, TAO J M . Effects of bagging treatments with different materials on aroma components and their biosynthetic gene expression in ‘Shine Muscat’ grape berry. Journal of Fruit Science, 2017,34(1):1-11. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160195
[24] 王继源, 冯娇, 侯旭东, 陶建敏 . CPPU对‘阳光玫瑰’葡萄品质及香气合成相关基因表达的影响. 南京农业大学学报, 2016,39(6):915-923.
doi: 10.7685/jnau.201603020
WANG J Y, FENG J, HOU X D, TAO J M . Effects of CPPU on aroma components and biosynthetic genes expression in ‘Shine Muscat’ grapes. Journal of Nanjing Agricultural University, 2016,39(6):915-923. (in Chinese)
doi: 10.7685/jnau.201603020
[25] EMANUELLI F, BATTILANA J, COSTANTINI L, LE CUNFF L, BOURSIQUOT J M, THIS P, GRANDO M S . A candidate gene association study on Muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biology, 2010,10:241.
doi: 10.1186/1471-2229-10-241 pmid: 3095323
[26] BATTIILANA J, EMANUELLI F, GAMBINO G, GRIBAUDO I, GASPERI F, BOSS P K, GRANDO M S . Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavor formation. Journal of Experimental Botany, 2011,62(15):5497-5508.
doi: 10.1093/jxb/err231 pmid: 21868399
[27] YANG X X, GUO Y S, ZHU J C, SHI G L, NIU Z Z, LIU Z D, LI K, GUO X W . Associations between the 1-deoxy-d-xylulose-5-phosphate synthase gene and aroma in different grapevine varieties. Genes & Genomics, 2017,39:1059-1067.
doi: 10.1007/s13258-017-0574-z
[28] MARTIN D M, AUBOURG S, SCHOWEY M B, DAVIET L, SCHALK M, TOUB O, LUND S T, BOHLMANN J, BOHLMANN J . Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010,10:226.
doi: 10.1186/1471-2229-10-226 pmid: 3017849
[29] MATARESE F, D'ONOFRIO G S C . Analysis of the expression of terpene synthase genes in relation to aroma content in two aromatic Vitis vinifera varieties. Functional Plant Biology, 2013,40(6):552-565.
doi: 10.1071/FP12326
[30] MARTINEZ F J, FOGUE M, COLLl M, CANO J C, CALAFATE C T, MANZONI P . Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry, 2014,105(3):12-24.
doi: 10.1016/j.phytochem.2014.06.007 pmid: 25014656
[31] MARTIN D M, BOHLMANN J . Identification of Vitis vinifera (-)-α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry, 2004,65:1223-1229.
doi: 10.1016/j.phytochem.2004.03.018 pmid: 15184006
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[10] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[15] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!