Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 755-766.doi: 10.3864/j.issn.0578-1752.2019.04.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Tissue Expression and Polymorphism of Sheep SMAD1 Gene and Their Association with Litter Size

TIAN ZhiLong1,2,TANG JiShun1,SUN Qing1,WANG YuQin2(),ZHANG XiaoSheng3,ZHANG JinLong3,CHU MingXing1()   

  1. 1Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan
    3Tianjin Institute of Animal Sciences, Tianjin 300381
  • Received:2018-09-03 Accepted:2018-12-29 Online:2019-02-16 Published:2019-02-27
  • Contact: YuQin WANG,MingXing CHU E-mail:wangyq6836@163.com;mxchu@263.net

Abstract:

【Objective】Sheep litter size is a very complex trait influenced by many factors. Ovulation is one of the most important factors. SMAD protein plays an important role in the mammalian follicular development as well as growth and differentiation process of granulosa cell. To reveal the relationship between the SMAD family member 1 (SMAD1) gene and the litter size of sheep and its mechanism affecting litter size, meanwhile to provide a scientific basis for sheep molecular breeding, we researched the expression pattern of SMAD1 in Small Tail Han sheep with different fertility and analyzed the relationship between polymorphism and the litter size in sheep, based on the previous sheep genome resequencing data. 【Method】First, reverse transcription PCR was used to detect the expression of SMAD1 gene in Small Tail Han sheep (brain, cerebellum, hypothalamus, pituitary, uterus, ovary, oviduct, heart, liver, spleen, lung, kidney, adrenal glands, thyroid, large intestine, small intestine, pancreas, rumen, and kidney fat) tissues with different lambing abilities. Then, Real-time PCR was performed to investigate the expression of SMAD1 gene in Small Tail Han sheep reproduction tissues (hypothalamus, pituitary, uterus, ovary, and oviduct) with different lambing abilities. Multiparous (Small Tail Han sheep (n=380), Hu sheep (n=101), Cele black sheep (n=52)) and uniparous (Sunite (n=21), Tan sheep (n=22), Prairie Tibetan sheep (n=161)) sheep breeds were selected and Sequenom MassARRAY ?SNP assay was applied to genotype five single nucleotide polymorphism sites (SNPs) of SMAD1 gene. Then the association was analyzed between SMAD1 and litter size in Small Tail Han sheep by using SPSS 19.0. 【Result】The results of RT-PCR revealed that SMAD1 gene expressed in 19 tissues. The qPCR showed that the expression of SMAD1 was higher in ovary (P<0.01), hypothalamus (P<0.05) and pituitary (P<0.05) of uniparous Small Tail Han sheep than that in multiparous sheep. From genotyping, this study found that the genotype frequencies and allele frequencies of the g.12485895A>G, g.12487558G>A and g.12487190G>T of SMAD1 gene were significantly different between uniparous and multiparous sheep (P<0.05). However, g.12508874T>C and g.12487467A>G had no significantly different between uniparous and multiparous sheep (P>0.05). Population genetic analysis indicated that g.12485895A>G, g.12487558G>A, g.12508874T>C, g.12487467A>G, and g.12487190G>T loci were at moderate polymorphism (0.25<PIC<0.5) in Small Tail Han sheep, Hu sheep, Prairie Tibetan sheep, Cele black sheep, Sunite and Tan sheep, while g.12508874T>C was at low polymorphism (PIC<0.25) in Tan sheep. The χ 2 test indicated that the g.12485895A>G and g.12487467 A>G were not under Hardy-Weinberg equilibrium (P<0.05) in Small Tail Han sheep and Prairie Tibetan sheep. g.12487558 G>A was not under Hardy-Weinberg equilibrium (P<0.05) in Small Tail Han sheep and Hu sheep. g.12487190 G>T was not under Hardy-Weinberg equilibrium (P<0.05) in Prairie Tibetan sheep. Other loci were under Hardy-Weinberg equilibrium (P>0.05) in six sheep breeds. Association analysis indicated that the polymorphism of g.12487190 G>T had significant correlation with the litter size in Small Tail Han sheep, while the litter size of TT was higher than GT and GG in the first three births (P<0.05). However, the polymorphism of g.12485895A>G, g.12487558G>A, g.12508874T>C and g.12487467A>G had no significant correlation with the litter size in Small Tail Han sheep. The combination of SMAD1 gene g.12487190G>T and FecB (A746G) gene showed that the number of lambs in AA-GG, AA-GT, AA-TT genotypes was significantly low than that of other genotypes (P<0.05), respectively. 【Conclusion】Therefore, it could be concluded that SMAD1 might be the key gene for litter size and the g.12487190G>T locus might provide a basis for litter size trait selection in sheep.

Key words: sheep, SMAD1 gene, tissue expression, SNP genotyping, litter size

Table 1

Primer information of SMAD1 gene in sheep"

引物及探针名称
Primer names
引物序列
Primer sequences
退火温度
Annealing temperature (℃)
扩增片段(bp)
Product size
用途
Usage
SMAD1 F: TGGTTCCAAGACACAGCGAAT
R: GGTGTATCTGCTGGCATCTGA
60 253 半定量RT-PCR semi-quantitative RT-PCR
SMAD1Q F: CCCGAGTGGGTGTAGTTT
R: TCCTGGCGGTGGTATTCT
60 162 荧光定量PCR qPCR
GAPDH F: TGACGCTCCCATGTTTGTGA
R: TCATAAGTCCCTCCACGATGC
60 149 半定量RT-PCR
和荧光定量PCR semi-quantitative RT-PCR and qPCR
FecB-Taqman F: CCAGCTGGTTCCGAGAGACA
R: CTTATACTCACCCAAGATGTTTTCATG
60 73 FecB-Taqman分型
FecB-Taqman genotyping
FecB-Taqman P-G
FecB-Taqman P-A
AAATATATCGGACGGTGTT-MGB
AAATATATCAGACGGTGTTG-MGB
60

Fig. 1

Electrophoresis of the RNA M:DL2000 DNA Marker;1-7:Brain, Cerebellum, Hypothalamus, Pituitary, Uterus, Ovary, Oviduct, respectively"

Fig. 2

Semi-quantitative RT-PCR of SMAD1 in 19 tissues of Small Tail Han sheep M:DL2000 DNA Marker;1-19:Brain, Cerebellum, Hypothalamus, Pituitary, Uterus, Ovary, Oviduct, Heart, Liver, Spleen, Lung, Kidney, Adrenal glands, Thyroid, Large intestine, Small intestine, Pancreas, Rumen, Kidney fat; 253 bp and 149 bp indicate the product size of SMAD1 and GAPDH, respectively; A: uniparous sheep B: multiparous sheep"

Fig. 3

Expression of SMAD1 gene in 7 tissues in Small Tail Han sheep with different fertility The * means significant difference (P<0.05); the** means highly significant difference (P<0.01)"

Fig. 4

Genotyping results of five SNPs in SMAD1 gene"

Table 2

Genotype and allele frequencies of different loci at the SMAD1 gene in uniparous and multiparous sheep"

位点
Locus
基因型 Genotype 多羔基因型频率 Genotype frequency in multiparous sheep 单羔基因型频率
Genotype frequency in uniparous sheep
卡方检验
χ2 test
(P value)
等位基因 Allele 多羔中基因频率
Allele frequency in multiparous sheep
单羔中基因频率
Allele frequency in uniparous sheep
卡方检验
χ2 test
(P value)
g.12485895A>G AA 0.30(167) 0.52 (104) 0.00 A 0.54 0.68 0.00
GA 0.47 (254) 0.34 (70) G 0.46 0.32
GG 0.23 (124) 0.14 (29)
g.12487558G>A AA 0.25 (139) 0.15 (32) 0.00 A 0.48 0.36 0.00
GA 0.45 (248) 0.40 (81) G 0.52 0.64
GG 0.30(161) 0.45 (91)
g.12508874T>C CC 0.56 (307) 0.58 (118) 0.69 C 0.74 0.76 0.50
CT 0.37 (203) 0.37 (75) T 0.26 0.24
TT 0.07 (39) 0.05(11)
g.12487467A>G AA 0.51 (249) 0.59 (111) 0.15 A 0.69 0.73 0.11
GA 0.35 (169) 0.28 (52) G 0.31 0.27
GG 0.14 (68) 0.13 (24)
g.12487190G>T GG 0.44 (250) 0.56 (115) 0.01 G 0.66 0.72 0.01
GT 0.43 (239) 0.32 (65) T 0.34 0.28
TT 0.13 (73) 0.12(24)

Table 3

Population genetic analysis of different loci at SMAD1 gene"

位点
Locus
品种
Breed
基因型频率
Genotype frequency
基因频率
Allele frequency
多态信息含量(PIC) Polymorphism information content 杂合度
HE) Heterozygosity (HE)
有效等位
基因数
Effective number of allele (NE)
卡方值(P
χ2 test
(P value)
g.12485895A>G AA AG GG A G
小尾寒羊
Small Tail Han sheep
0.33 0.44 0.23 0.55 0.45 0.37 0.49 1.98 0.02
湖羊 Hu sheep 0.35 0.54 0.11 0.62 0.38 0.36 0.47 1.89 0.12
草原型藏羊
Prairie Tibetan sheep
0.58 0.32 0.10 0.73 0.27 0.31 0.39 1.64 0.02
策勒黑羊
Cele black sheep
0.06 0.50 0.44 0.31 0.69 0.34 0.43 1.74 0.21
苏尼特羊
Sunite sheep
0.29 0.48 0.23 0.52 0.48 0.37 0.50 2.00 0.83
滩羊 Tan sheep 0.27 0.41 0.32 0.48 0.52 0.37 0.50 2.00 0.40
g.12487558G>A AA GA GG A G
小尾寒羊
Small Tail Han sheep
0.25 0.43 0.32 0.47 0.53 0.37 0.50 1.99 0.01
湖羊 Hu sheep 0.18 0.34 0.48 0.36 0.64 0.35 0.46 1.85 0.00
草原型藏羊
Prairie Tibetan sheep
0.10 0.40 0.50 0.30 0.70 0.33 0.42 1.73 0.60
策勒黑羊
Cele black sheep
0.35 0.52 0.13 0.61 0.39 0.36 0.48 1.91 0.53
位点
Locus
品种
Breed
基因型频率
Genotype frequency
基因频率
Allele frequency
多态信息含量(PIC) Polymorphism information content 杂合度
HE) Heterozygosity (HE)
有效等位
基因数
Effective number of allele (NE)
卡方值(P
χ2 test
(P value)
苏尼特羊
Sunite sheep
0.33 0.29 0.38 0.48 0.52 0.37 0.50 2.00 0.05
滩羊 Tan sheep 0.41 0.45 0.14 0.64 0.36 0.36 0.46 1.86 0.93
g.12508874T>C CC CT TT C T
小尾寒羊
Small Tail Han sheep
0.61 0.34 0.05 0.78 0.22 0.29 0.35 1.53 0.64
湖羊 Hu sheep 0.34 0.50 0.16 0.59 0.41 0.37 0.48 1.94 0.67
草原型藏羊
Prairie Tibetan sheep
0.56 0.38 0.06 0.75 0.25 0.31 0.38 1.60 0.94
策勒黑羊
Cele black sheep
0.58 0.38 0.04 0.77 0.23 0.29 0.36 1.55 0.55
苏尼特羊
Sunite sheep
0.57 0.38 0.05 0.76 0.24 0.30 0.36 1.57 0.82
滩羊 Tan sheep 0.73 0.27 0.00 0.86 0.14 0.21 0.24 1.31 0.46
g.12487467A>G AA GA GG A G
小尾寒羊
Small Tail Han sheep
0.54 0.30 0.16 0.69 0.31 0.34 0.43 1.75 0.00
湖羊 Hu sheep 0.62 0.33 0.05 0.78 0.22 0.28 0.34 1.52 0.84
草原型藏羊
Prairie Tibetan sheep
0.65 0.25 0.10 0.78 0.22 0.28 0.34 1.52 0.00
策勒黑羊
Cele black sheep
0.22 0.55 0.23 0.49 0.51 0.37 0.50 2.00 0.46
苏尼特羊Sunite sheep 0.43 0.38 0.19 0.62 0.38 0.36 0.47 1.88 0.42
滩羊 Tan sheep 0.29 0.38 0.33 0.48 0.52 0.37 0.50 2.00 0.28
g.12487190G>T GG GT TT G T
小尾寒羊
Small Tail Han sheep
0.45 0.41 0.14 0.65 0.35 0.35 0.45 1.83 0.08
湖羊 Hu sheep 0.61 0.34 0.05 0.78 0.22 0.28 0.34 1.52 0.90
草原型藏羊
Prairie Tibetan sheep
0.62 0.29 0.09 0.77 0.23 0.29 0.35 1.55 0.00
策勒黑羊
Cele black sheep
0.19 0.58 0.23 0.48 0.52 0.37 0.50 2.00 0.26
苏尼特羊
Sunite sheep
0.38 0.48 0.14 0.62 0.38 0.36 0.47 1.89 0.96
滩羊 Tan sheep 0.27 0.41 0.32 0.48 0.52 0.37 0.50 2.00 0.40

Table 4

Association analysis of litter size of each genotype of SMAD1 gene SNPs in Small Tail Han Sheep"

位点
Locus
基因型
Genotype
第一胎样本数
Number of the first parity
第一胎产羔数
Litter size of the first parity
第二胎样本数
Number of the second parity
第二胎产羔数
Litter size of the second parity
第三胎样本数
Number of the third parity
第三胎产羔数
Litter size of the third parity
g.12485895A>G AA 114 2.11±0.08 109 2.33±0.09 45 2.80±0.15
GG 80 2.14±0.09 74 2.24±0.11 27 2.93±0.20
GA 144 2.12±0.07 139 2.37±0.08 55 2.70±0.14
g.12487190G>T GG 157 2.08±0.07a 150 2.28±0.07a 57 2.67±0.14a
GT 144 2.16±0.07a 138 2.34±0.08a 60 2.72±0.13a
TT 51 2.39±0.12b 46 2.65±0.13b 16 3.75±0.25b
g.12487467A>G AA 159 2.11±0.06 152 2.29±0.07 56 2.70±0.13
GG 48 2.35±0.12 43 2.47±0.14 15 2.80±0.24
GA 67 2.17±0.09 85 2.31±0.10 36 2.67±0.16
g.12487558G>A AA 92 2.28±0.09 87 2.43±0.10 35 2.91±0.17
GG 107 2.06±0.08 99 2.31±0.09 44 2.82±0.15
GA 142 2.16±0.07 138 2.38±0.08 50 2.64±0.14
g.12508874T>C CC 204 2.10±0.06 193 2.40±0.07 66 2.82±0.13
CT 120 2.27±0.08 113 2.35±0.09 54 2.82±0.14
TT 18 2.11±0.02 19 2.21±0.21 9 2.56±0.35

Table 5

Association analysis between the combined genotypes of SMAD1(g.12487190G>T loci) and FecB of litter size in Small Tail Han sheep"

基因型
Genotype
第一胎样本数
Number of the first parity
第一胎产羔数
Litter size of the first parity
第二胎样本数
Number of the second parity
第二胎产羔数
Litter size of the second parity
第三胎样本数
Number of the third parity
第三胎产羔数
Litter size of the third parity
AA-GG 23 1.00±0.16a 23 1.00±0.18a 23 1.04±0.19a
AA-GT 14 1.36±0.21a 14 1.36±0.22a 14 1.07±0.24a
AA-TT 10 1.10±0.25a 10 1.30±0.27a 10 1.10±0.29a
AG-GG 77 2.04±0.09b 75 2.40±0.10b 27 2.67±0.18b
AG-GT 70 2.07±0.09b 67 2.16±0.10b 34 2.65±0.16b
AG-TT 27 2.14±0.15b 24 2.50±0.17b 10 3.40±0.29b
GG-GG 57 2.33±0.21b 53 2.38±0.12b 22 3.00±0.19b
GG-GT 60 2.40±0.10b 57 2.67±0.11b 18 3.22±0.21b
GG-TT 14 2.29±0.10b 13 2.31±0.23b 6 3.33±0.37b
[1] HERNANDEZ GIFFORD J A . The role of WNT signaling in adult ovarian folliculogenesis. Reproduction, 2015,150(4):137-148.
doi: 10.1530/REP-14-0685 pmid: 26130815
[2] LI L, JI S Y, YANG J L, LI X X, ZHANG J, ZHANG Y, HU Z Y, LIU Y X . Wnt/β-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Molecular & Cellular Endocrinology, 2014,382(2):915-925.
doi: 10.1016/j.mce.2013.11.007 pmid: 24246780
[3] FAN H Y, LIU Z, SHIMADA M, STERNECK E, JOHNSON P F, HEDRICK S M, RICHARDS J S . MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science, 2009,324(5929):938-941.
doi: 10.1126/science.1171396 pmid: 2847890
[4] CHANG H M, QIAO J, LEUNG P C K . Oocyte-somatic cell interactions in the human ovary-novelrole of bone morphogenetic proteins and growth differentiation factors. Human Reproduction Update, 2017,23(1):1-18.
doi: 10.1093/humupd/dmw039 pmid: 5155571
[5] LAN H Y . Transforming growth factor-β/Smad signalling in diabetic nephropathy. Clinical & Experimental Pharmacology & Physiology, 2012,39(8):731-738.
doi: 10.1111/j.1440-1681.2011.05663.x pmid: 22211842
[6] WAKEFIELD L M, HILL C S . Beyond TGFβ: roles of other TGF-β superfamily members in cancer. Nature Reviews Cancer, 2013,13(5):328-341.
doi: 10.1038/nrc3500 pmid: 23612460
[7] WANG W, KOKA V, LAN H Y . Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology, 2005,10(1):48-56.
doi: 10.1111/j.1440-1797.2005.00334.x pmid: 15705182
[8] MASSAGUé J, WOTTON D . Transcriptional control by the TGF-β/Smad signaling system. Embo Journal, 2000,19(8):1745-1754.
doi: 10.1093/emboj/19.8.1745
[9] DAVIS G, BALAKRISHNAN L, ROSS I, WILSON T, GALLOWAY S, LUMSDEN B, HANRAHAN J, MULLEN M, MAO X, WANG G . Investigation of the Booroola (FecB) and Inverdale (FecX I) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Animal Reproduction Science, 2006,92(1):87-96.
doi: 10.1016/j.anireprosci.2005.06.001 pmid: 15982834
[10] 刘秋月, 胡文萍, 贺小云, 潘章源, 郭晓飞, 冯涛, 曹贵玲, 黄冬维, 贺建宁, 狄冉, 王翔宇, 储明星 . 绵羊多羔主效基因 FecB高通量检测方法的建立及应用. 畜牧兽医学报, 2017,48(1):39-51.
doi: 10.11843/j.issn.0366-6964.2017.01.005
LIU Q Y, HU W P, HE X Y, PAN Z Y, GUO X F, FENG T, CAO G L, HUANG D W, HE J N, DI R, WANG X Y, CHU M X . Establishment of high-throughput molecular detection methods for ovine high fecundity major gene FecB and their application. Chinese Journal of Animal and Veterinary Sciences, 2017,48(1):39-51. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2017.01.005
[11] 周梅, 曹晓涵, 贺小云, 孙庆, 狄冉, 胡文萍, 王翔宇, 张效生, 张金龙, 刘秋月, 储明星 . 绵羊FGF 7基因组织表达及其多态性与产羔数之间的关系. 畜牧兽医学报, 2018,49(3):525-533.
doi: 10.11843/j.issn.0366-6964.2018.03.008
ZHOU M, CAO X H, HE X Y, SUN Q, DI R, HU W P, WANG X Y, ZHANG X S, ZHANG J L, LIU Q Y, CHU M X . Tissue expression and polymorphism of sheep FGF7 gene and their association with litter size. Chinese Journal of Animal and Veterinary Sciences, 2018,49(3):525-533. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2018.03.008
[12] SCHMITTGEN T D, LIVAK K J . Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008,3(6):1101.
doi: 10.1038/nprot.2008.73
[13] ORTEGA M S, DENICOL A C, COLE J B, NULL D J, HANSEN P J . Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows. Animal Genetics, 2016,47(3):288-297.
doi: 10.1111/age.12420 pmid: 26923315
[14] 田志龙, 刘秋月, 王翔宇, 狄冉, 胡文萍, 王玉琴, 储明星 . 绵羊BMP15基因多态性及其与产羔数的关联分析. 中国畜牧杂志, 2018,54(7):23-27.
TIAN Z L, LIU Q Y, WANG X Y, DI R, HU W P, WANG Y Q, CHU M X . Polymorphism of sheep BMP15 gene and its association with litter size. Chinese Journal of Animal Science, 2018, 54(7):23-27. (in Chinese)
[15] RUNYAN C E, LIU Z, SCHNAPER H W . Phosphatidylinositol 3-Kinase and Rab5 GTPase Inversely Regulate the Smad Anchor for Receptor Activation (SARA) Protein Independently of Transforming Growth Factor-β1. Journal of Biological Chemistry, 2012,287(43):35815-35824.
doi: 10.1074/jbc.M112.380493 pmid: 22942286
[16] WAN M, LI C, ZHEN G, JIAO K, HE W, JIA X, WANG W, SHI C, XING Q, CHEN Y F . Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells, 2012,30(11):2498-2511.
doi: 10.1002/stem.1208 pmid: 22911900
[17] WANG W, WANG L, LI X X, CHEN X, ZHANG H Y, HE Y, WANG J J, ZHAO Y Y, ZHANG B L, XU Y X . Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2010,11(9):719-729.
doi: 10.1631/jzus.B1000079 pmid: 2932882
[18] MOTTERSHEAD D G, PULKKI M M, MUGGALLA P, PASTERNACK A, TOLONEN M, MYLLYMAA S, KORCHYNSKYI O, NISHI Y, YANASE T, LUN S . Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells. Molecular & Cellular Endocrinology, 2008,283(1):58-67.
[19] MAKITA M, MIYANO T . Steroid hormones promote bovine oocyte growth and connection with granulosa cells. Theriogenology, 2014,82(4):605-612.
doi: 10.1016/j.theriogenology.2014.05.020 pmid: 24985562
[20] CAICEDO RIVAS R E, NIETO M P, KAMIYOSHI M . Effects of steroid hormone in avian follicles. Asian-Australasian journal of animal sciences, 2016,29(4):487-499.
doi: 10.5713/ajas.15.0310 pmid: 4782083
[21] REGAN S L, MCFARLANE J R, O'SHEA T, ANDRONICOS N, ARFUSO F, DHARMARAJAN A, ALMAHBOBI G . Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in Merino sheep. Reproduction, 2015,150(2):151-163.
doi: 10.1530/REP-14-0581 pmid: 25948249
[22] SHIMASAKI S, ZACHOW R J, LI D, KIM H, IEMURA S, UENO N, SAMPATH K, CHANG R J, ERICKSON G F . A functional bone morphogenetic protein system in the ovary. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(13):7282-7287.
doi: 10.1073/pnas.96.13.7282 pmid: 10377406
[23] LEE W S, OTSUKA F, MOORE R K, SHIMASAKI S . Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biology of Reproduction, 2001,65(4):994-999.
doi: 10.1095/biolreprod65.4.994
[24] FRASER M, BRAEMS G A, CHALLIS J R . Developmental regulation of corticotrophin receptor gene expression in the adrenal gland of the ovine fetus and newborn lamb: effects of hypoxia during late pregnancy. Journal of Endocrinology, 2001,169(1):1-10.
doi: 10.1677/joe.0.1690001 pmid: 11250641
[25] OTSUKA F, YAO Z, LEE T, YAMAMOTO S, ERICKSON G F, SHIMASAKI S . Bone morphogenetic protein-15. Identification of target cells and biological functions. Journal of Biological Chemistry, 2000,275(50):39523-39528.
doi: 10.1074/jbc.M007428200
[26] KAMALLUDIN M H, GARCIA-GUERRA A, WILTBANK M C, KIRKPATRICK B W . Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rate. Biology Reprod, 2018,98(3):323-334.
doi: 10.1093/biolre/iox133 pmid: 29088317
[27] 牛家强, 索朗斯珠, 徐业芬, 王玉恒, 商鹏, 强巴央宗, 郭敏, 席广银, 赵良栋 . 牦牛bta-miR-1434-5p和Smad1基因组织表达谱及荧光素酶报告载体构建. 中国农业大学学报, 2018,23(05):52-59.
NIU J Q, SUO L S Z, XU Y F, WANG Y H, SHANG P, QIANG B Y Z, GUO M, XI G Y, ZHAO L D . Tissue expression profiles of yak bat-miR-1434-5p and Smad1 gene and the construction of luciferase reporter vector. Journal of China Agricultural University, 2018,23(05):52-59. (in Chinese)
[28] 徐业芬 . Smad信号转导通路相关基因表达与湖羊高繁殖力关系的研究[D]. 南京:南京农业大学, 2010.
XU Y F . Gene expression related to smad signaling molecule and its relationship with fecundity Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[29] 池秋蝶, 董迎辉, 姚韩韩, 林志华 . 文蛤Smad1/5基因克隆、时空表达及生长相关SNP位点筛查. 水生生物学报, 2018,42(02):277-283.
doi: 10.7541/2018.035
CHI Q D, DONG Y H, YAO H H, LIN Z H . Cloning, spatiotemporal expression and SNPs detection of smad1/5 gene in hard clam meretrix meretrix. Acta Hydrobiologica Sinica, 2018,42(2):277-283. (in Chinese)
doi: 10.7541/2018.035
[30] SHI T, XU Y, YANG M J, ZHOU Y, LIU M, LAN X Y, LEI C Z, QI X L, LIN F P, BAI Y Y . Genetic variation, association analysis, and expression pattern of SMAD3 gene in Chinese cattle. Czech Journal of Animal Science, 2016,61(5):209-216.
doi: 10.17221/34/2015-CJAS
[31] XU J, LI J, WANG H, WANG G, CHEN J, HUANG P, CHENG J, GAN L, WANG Z, CAI Y . A novel SMAD family protein, SMAD9 is involved in follicular initiation and changes egg yield of geese via synonymous mutations in exon1 and intron2. Molecular Biology Reports, 2015,42(1):289-302.
doi: 10.1007/s11033-014-3772-7 pmid: 25280542
[32] CUI Y, YAN H, WANG K, XU H, ZHANG X, ZHU H, LIU J, QU L, LAN X, PAN C . Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Frontiers in Genetics, 2018,9:91.
doi: 10.3389/fgene.2018.00091
[33] XU S S, GAO L, XIE X L, REN Y L, SHEN Z Q, WANG F, SHEN M, EYORSDOTTIR E, HALLSSON J H, KISELEVA T, KANTANEN J, LI M H . Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front Genet, 2018,9:118.
doi: 10.3389/fgene.2018.00118
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[9] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[10] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[11] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[12] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[13] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[14] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
[15] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!