Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 725-737.doi: 10.3864/j.issn.0578-1752.2019.04.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices

ZENG XiangYuan1,ZHAO WuQi1(),LU Dan1,WU Ni1,MENG YongHong1,GAO GuiTian1,LEI YuShan2   

  1. 1College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119;
    2Shaanxi Rural Science and Technology Development Center, Xi’an 710054;
  • Received:2018-08-13 Accepted:2018-09-27 Online:2019-02-16 Published:2019-02-27
  • Contact: WuQi ZHAO E-mail:zwq65@163.com

Abstract:

【Objective】 This research aimed to investigate the effects of ultrasonic on the sugar permeability effect, drying energy consumption and quality of kiwifruit slices and its mathematical model and then the process parameters was optimized to provide a theoretical basis for the application of ultrasonic osmosis technology to produce high quality and low energy kiwifruit slices.【Method】 Taking the kiwifruit as the raw material, the ultrasonic density, time, temperature and sucrose concentration were selected as the factors, and the solids gain (SG), water loss (WL), unit energy consumption, titratable acid, sugar content, color difference (ΔE), L*, a*, b*, hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, resilience, chlorophyll preservation rate, vitamin C preservation rate and soluble solid were selected as indicators. The box Benhnken test with four factors was designed, and the characteristic index for evaluating the quality of the kiwifruit slices was screened out using factor analysis. The two polynomial regression equation model of the unit energy consumption and the quality characteristic index of the kiwifruit slices were established. The primary and secondary factors and interactions of the effects were analyzed, and the optimal parameters of the ultrasonic infiltration process of kiwifruit slices were optimized and verified. 【Result】 The characteristic index for evaluating the quality of the kiwifruit slices were resilience, ΔE, sugar content, WL, titratable acid and vitamin C preservation rate. The regression model of the energy consumption and quality characteristics of kiwifruit slices was statistically significant (P<0.05). The order of the effect of each factor on sugar content was sucrose concentration>time>temperature>ultrasonic density, and the interactions between time and temperature, temperature and sucrose concentration, sucrose concentration and ultrasonic density were extremely significant. The interaction between temperature and ultrasonic density was significant. The order of the effect of each factor on WL was time>ultrasonic density>sucrose concentration>temperature, and the interactions between time and temperature and time and ultrasonic density were significant. The order of the effect of each factor on unit energy consumption was sucrose concentration>time>ultrasonic density>temperature, and the interaction between temperature and sucrose concentration was significant. The order of the effect of each factor on resilience was time>sucrose concentration>temperature>ultrasonic density, and the interaction between sucrose concentration and ultrasonic density was significant. The order of the effect of each factor on ΔE was sucrose concentration> temperature=ultrasonic density>time. The order of the effect of each factor on titratable acid was time>ultrasonic density>sucrose concentration>temperature, and the interaction between time and ultrasonic density was significant. The order of the effect of each factor on the retention rate of vitamin C was sucrose concentration> temperature>time>ultrasonic density. The optimal process parameters for ultrasonic infiltration of kiwifruit slices were ultrasonic time of 58 min, temperature of 47℃, sucrose concentration of 40 °Brix, and ultrasonic density of 0.7 W·mL -1. Under these conditions, the unit energy consumption of kiwifruit slices was 18.15 kJ·g -1, the recovery was 0.172, ΔE was 15.51, the sugar content was 35.03%, the WL was 27.85%, the titratable acid was 1.58%, and the vitamin C retention rate was 92.23%.【Conclusion】 The factor analysis method could extract the characteristic indexes for evaluating the quality of kiwifruit slices. The established quadratic polynomial regression model could be applied to analyze and to predict the effects of ultrasonic treatment parameters on the osmotic effect, drying energy and quality of kiwifruit slices. Ultrasonic treatment had the advantages of fast sugar infiltration rate, little damage, lower energy consumption and better texture quality. Ultrasonic treatment could be used in the kiwifruit infiltration process.

Key words: kiwifruit, ultrasonic infiltration, quality evaluation, factor analysis, response surface

Table 1

Variables and levels in response surface design"

水平/因子
Level/Factor
A超声时间
Ultrasound time (min)
B超声温度
Ultrasound temperature (℃)
C蔗糖浓度
Sucrose concentration (°Brix)
D超声声能密度
Ultrasonic density (W·mL-1)
-1 40 40 40 0.63
0 50 50 50 0.75
1 60 60 60 0.88

Table 2

Response surface experimental design and results"

编号
Code
时间
Time
(min)
温度
Tempe-
rature
(℃)
蔗糖浓度
Sucrose concen-
tration
(°Brix)
超声声
能密度
Ultrasonic density (W·mL-1)
硬度
Hard-
ness
(g)
黏性
Adhesive-
ness
弹性
Spring-
iness
粘聚性
Cohesi-
veness
胶粘性Gummi-
ness
(g)
咀嚼性
Chewi-
ness
(g)
回复性Resilie-
nce
L* a* b* ΔE 可滴定酸
Titratable acid (%)
叶绿素
保存率
Chlorophyll preservation rate (%)
含糖量
Sugar content (%)
SG
(%)
WL
(%)
TSS
(%)
维生素C
保存率
Vitamin C preservation rate (%)
单位能耗
Unit energy consumption
(kJ·g-1)
1 60 50 60 0.75 3390.83 -1.64 0.84 0.55 1881.13 1573.14 0.18 74.07 2.24 29.83 24.31 1.58 89.18 31.02 18.90 20.79 39 81.20 18.5
2 50 40 50 0.88 1204.52 -4.75 0.84 0.55 660.23 555.24 0.18 79.00 -0.43 28.40 28.45 1.40 79.76 35.70 17.85 18.51 36 83.65 17
3 50 50 50 0.75 1953.03 -0.94 0.84 0.54 1063.70 893.56 0.18 74.57 0.50 32.16 24.25 1.88 83.74 37.26 11.07 26.01 38 85.74 19
4 60 40 50 0.75 1841.43 -5.02 0.84 0.55 1006.10 840.62 0.18 66.53 0.27 24.23 19.91 1.40 95.19 38.83 5.74 19.55 37 88.56 18.5
5 50 50 60 0.63 1539.59 -3.15 0.84 0.55 850.97 712.38 0.18 73.01 1.27 30.29 22.98 1.84 89.17 37.89 16.82 19.13 34 90.11 13.5
6 40 50 50 0.88 1726.83 -4.19 0.84 0.56 961.76 804.74 0.18 75.17 -0.51 32.28 24.59 1.23 79.35 36.47 8.63 22.80 42 88.11 14
7 50 60 50 0.88 1518.26 -8.65 0.85 0.56 842.82 720.18 0.18 65.51 1.06 32.86 18.01 1.23 81.14 37.51 17.80 30.78 45 85.75 18
8 40 50 60 0.75 1585.42 -5.01 0.79 0.47 738.27 580.53 0.12 61.78 -0.06 23.41 16.35 1.23 80.97 36.92 7.63 19.87 38 83.02 13
9 40 50 40 0.75 1636.43 -0.37 0.84 0.55 893.02 748.93 0.18 58.26 4.81 27.61 15.34 1.40 91.19 37.90 12.03 27.07 41 89.32 19.5
10 60 50 40 0.75 1937.21 -1.79 0.81 0.55 1071.53 872.66 0.18 51.75 3.16 26.22 12.38 1.66 90.34 37.89 15.19 31.64 38 91.63 20
11 60 60 50 0.75 1374.73 -2.17 0.84 0.55 751.64 631.31 0.18 58.50 2.43 24.40 14.99 1.14 80.10 31.90 17.53 22.27 33 82.79 16
12 40 60 50 0.75 889.14 -0.97 0.83 0.56 495.18 410.31 0.19 62.83 2.04 24.05 17.78 2.01 79.58 37.42 11.88 20.48 42 84.46 17
13 50 50 50 0.75 1828.27 -1.74 0.84 0.55 997.71 836.14 0.18 46.66 3.40 18.16 18.64 1.66 77.84 36.88 13.93 22.36 36 87.98 21
14 50 40 60 0.75 1614.36 -0.94 0.84 0.56 902.19 760.58 0.19 67.82 2.85 29.42 18.88 2.45 79.18 37.72 9.74 19.44 35 83.19 17.5
15 60 50 50 0.88 1284.56 -3.20 0.78 0.52 665.40 517.79 0.14 72.31 1.63 31.48 22.41 1.75 80.97 36.89 16.61 35.61 39 88.95 18
16 50 40 40 0.75 1941.43 -1.44 0.84 0.55 1058.63 885.31 0.17 78.30 1.10 31.91 27.99 1.40 91.38 31.69 11.47 26.62 35 95.41 15.5
17 50 40 50 0.63 1200.52 -6.41 0.84 0.55 659.88 552.85 0.18 70.45 1.10 31.01 20.48 1.66 93.05 37.59 13.67 35.51 32 82.55 21
18 50 60 60 0.75 781.97 -10.40 0.85 0.56 436.68 371.61 0.18 66.95 0.06 26.20 17.55 1.49 95.60 37.56 11.26 26.98 37 83.34 13.5
19 50 50 50 0.75 1828.27 -1.74 0.84 0.55 997.71 836.14 0.18 46.66 3.40 18.16 16.64 1.66 77.84 36.88 13.93 22.36 36 87.98 21
20 40 50 50 0.63 1058.95 -0.62 0.82 0.55 582.71 480.64 0.18 63.27 0.44 28.41 15.91 1.31 87.21 35.84 18.44 35.83 36 81.35 15
21 60 50 50 0.63 1631.72 -2.40 0.82 0.55 894.86 731.25 0.16 47.24 1.26 18.62 16.99 1.31 80.45 36.70 17.49 29.27 42 89.24 13.5
22 50 50 40 0.88 1590.44 -3.95 0.83 0.55 880.65 731.76 0.18 68.03 3.11 30.81 19.10 1.49 91.78 39.03 6.73 18.73 33 95.47 22
23 50 50 50 0.75 1953.03 -0.94 0.84 0.54 1063.70 893.56 0.18 74.57 0.50 32.16 24.25 1.88 83.74 37.26 11.07 26.01 38 85.74 19
24 50 50 60 0.88 1196.24 -0.70 0.84 0.55 661.65 553.66 0.18 78.00 0.63 31.75 27.58 1.88 92.48 38.00 9.07 22.93 36 82.12 17
25 50 50 50 0.75 1953.03 -0.94 0.84 0.54 1063.70 893.56 0.18 74.57 0.50 32.16 24.25 1.88 83.74 37.26 11.07 26.01 38 85.74 19
26 50 60 50 0.63 1920.91 -3.30 0.84 0.56 1082.32 905.49 0.18 60.25 -0.70 24.08 14.61 1.66 82.94 36.93 12.45 21.21 40 82.68 17.5
27 50 60 40 0.75 2592.37 -0.45 0.84 0.55 1420.48 1191.78 0.18 70.59 1.55 28.36 20.96 1.75 77.50 37.47 17.60 20.27 35 81.92 20.5
28 50 50 40 0.63 1384.35 -1.54 0.78 0.53 729.24 571.65 0.15 69.37 2.07 31.74 19.86 1.23 97.28 31.24 19.24 20.14 36 94.17 19.5
29 40 40 50 0.75 1826.97 -2.85 0.83 0.55 1003.09 832.33 0.18 61.64 2.38 23.42 17.42 1.49 88.31 37.81 15.52 34.80 34 90.79 18

Fig. 1

Screen plot of factor analysis"

Table 3

Total variance explained of factor analysis"

成分
Factor number
特征值
Eigen value
(λ)
方差贡献率
Variance contribution (%)
累计方差贡献率
Cumulative variance contribution (%)
1 4.448 24.713 24.713
2 3.145 17.471 42.184
3 2.137 11.873 54.057
4 1.941 10.786 64.843
5 1.603 8.907 73.750
6 1.050 5.834 79.583

Table 4

Rotated component matrix of factor analysis"

指标Indicator PC1 PC2 PC3 PC4 PC5 PC6
含糖量Sugar content 0.187 -0.038 0.856 -0.104 0.106 0.068
可滴定酸Titratable acid 0.341 0.204 -0.171 -0.062 0.632 -0.063
L* 0.057 0.960 0.086 -0.186 -0.058 0.043
a* -0.009 -0.532 0.387 0.065 0.601 -0.075
b* 0.056 0.882 0.254 0.123 0.021 0.095
ΔE 0.030 0.860 -0.125 -0.248 0.176 -0.162
硬度Hardness 0.117 0.104 0.233 0.025 0.562 0.500
黏性Adhesiveness -0.042 -0.027 -0.027 -0.059 0.833 0.118
弹性Springiness 0.904 0.047 -0.039 -0.107 -0.079 0.048
黏聚性Cohesiveness 0.835 0.029 0.065 0.163 0.132 -0.289
胶黏性Gumminess 0.783 0.018 0.109 -0.052 0.059 0.414
咀嚼性Chewiness 0.844 0.043 0.092 -0.082 0.050 0.383
回复性Resilience 0.970 0.031 0.079 0.018 0.152 -0.035
叶绿素保存率Chlorophyll preservation rate -0.041 0.221 0.809 0.057 -0.234 -0.277
维生素C保存率Vitamin C preservation rate -0.134 0.022 0.326 -0.044 -0.079 -0.754
TSS -0.073 -0.039 -0.434 0.379 -0.155 0.114
WL -0.010 -0.005 0.049 0.931 -0.054 0.024
SG -0.006 -0.273 -0.179 0.911 0.041 -0.042

Table 5

Test of significance for regression equation coefficients of each indicator"

变异来源
Source
PP value
Y1 Y2 Y3 Y4 Y5 Y6 Y7
模型Model <0.0001 0.0005 <0.0001 0.0078 0.0004 0.0025 0.0396
A <0.0001 0.6991 0.0347 0.2509 0.0058 0.6519 0.2423
B 0.3429 0.0049 0.0505 0.9331 0.7939 0.0034 0.4581
C 0.0007 0.0041 <0.0001 0.7845 0.2815 0.0001 0.0026
D 0.8851 0.0049 0.1385 0.3448 0.0742 0.6668 0.3753
AB 0.6548 <0.0001 0.0282 0.626 0.6977
AC 0.0531 0.0538 0.0801 0.6059 0.2075
AD 0.0658 0.3979 0.0149 0.046 0.1964 0.168
BC 0.2957 < 0.0001 0.0655 0.201 0.191 0.0321
BD 0.0014 0.082 0.4654 0.7122 0.254
CD 0.0023 <0.0001 0.3522 0.0945 0.7954
A2 <0.0001 0.0034 0.001 0.0915 0.0003 0.0173
B2 0.0003 0.3097 0.0745 0.702 0.2886 0.0559 0.2562
C2 0.0046 0.0002 0.0251 0.7761 0.2562
D2 0.0013 0.9418 0.002 0.7433 0.0845
失拟项 Lack of fit 0.059 0.919 0.2937 0.1032 0.5381 0.053 0.1061

Fig. 2

Response surface plots of the interaction of sucrose concentration and ultrasonic density on the resilience"

Fig. 3

Response surface plots of the interaction of various factors on the sugar content"

Fig. 4

Response surface plots of the interaction of various factors on WL"

Fig. 5

Response surface plots of the interaction of time and ultrasonic density on titratable acid"

Fig. 6

Response surface plots of the interaction of temperature and sucrose concentration on unit energy consumption"

Table 6

Prediction effect of regression equation"

指标
Indicator
回复性
Resilience
ΔE 含糖量
Sugar content (%)
WL
(%)
可滴定酸
Titratable acid (%)
维生素C保存率
Vitamin C preservation rate (%)
单位能耗
Unit energy consumption (kJ·g-1)
理论预测值
Theoretical predicted value
0.172 15.51 35.03 27.85 1.58 92.23 18.15
实测值
Measured value
0.179 14.88 36.49 28.94 1.65 91.63 19
相对误差
Relative error (%)
4.07 -4.06 4.17 3.91 4.43 -0.65 4.68
[1] 张计育, 莫正海, 黄胜男, 郭忠仁 . 21世纪以来世界猕猴桃产业发展以及中国猕猴桃贸易与国际竞争力分析. 中国农学通报, 2014,30(23):48-55.
doi: 10.11924/j.issn.1000-6850.2013-2887
ZHANG J Y, MO Z H, HUANG S N, GUO Z R . Development of world Kiwifruit industry since the 21st century and analysis of Chinese Kiwifruit trade and international competitiveness. Chinese Agricultural Science Bulletin, 2014,30(23):48-55. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2013-2887
[2] 杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉 . 超高压杀菌处理冷破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377.
doi: 10.3864/j.issn.0578-1752.2018.07.014
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R . Optimization of ultra-high pressure sterilization conditions on the Kiwi Fruit Pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.07.014
[3] 李宁, 朱文学, 白喜婷, 马怡童 . 牡丹花脯超声渗糖工艺优化及其质构特性的对比分析. 食品与机械, 2017,33(9):173-177.
LI N, ZHU W X, BAI X T, MA Y T . Optimization on ultrasonic sugar permeability process and comparative analysis of textural properties of peony preserves. Food and machinery, 2017,33(9):173-177. (in Chinese)
[4] MCCLEMENTS D J . Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 1995,6(9):293-299.
doi: 10.1016/S0924-2244(00)89139-6
[5] FERNANDES F A N, GALLAO M I, RODRIGUES S . Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 2009,90(2):186-190.
doi: 10.1016/j.jfoodeng.2008.06.021
[6] CORREA J L G, JUSTUS A, OLIVEIRA L F D, ALVES G E . Osmotic dehydration of Tomato assisted by ultrasound: evaluation of the liquid media on mass transfer and product quality. International Journal of Food Engineering, 2015,11(4):505-516.
[7] LI H, ZHAO C P, GUO Y H, AN K J, DING S H, WANG Z F . Mass transfer evaluation of ultrasonic osmotic dehydration of cherry tomatoes in sucrose and salt solutions. International Journal of Food Science and Technology, 2012,47(5):954-960.
doi: 10.1111/j.1365-2621.2011.02927.x
[8] XIN Y, ZHANG M, ADHIKARI B . Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). Journal of Food Engineering, 2013,119(3):640-647.
doi: 10.1016/j.jfoodeng.2013.06.035
[9] LIU Y H, CHONG C J, WU J Y, MIAO S, LUO L, LI X . Ultrasound assisted osmotic dehydration pretreatment on carrot followed by hot-air drying //International Conference on Advanced Mechatronic Systems (ICAMechS 2013), Luoyang, China, 2013: 634-637.
doi: 10.1109/ICAMechS.2013.6681719
[10] GOULA A M, KOKOLAKI M, DAFTSIOU E . Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, 2017,105:157-170.
doi: 10.1016/j.fbp.2017.07.008
[11] CARCEL J A, BENEDITO J, ROSSELLO C, MULET A . Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 2007,78(2):472-479.
doi: 10.1016/j.jfoodeng.2005.10.018
[12] FERNANDES F A N, RODRIGUES S . Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 2007,82(2):261-267.
doi: 10.1016/j.jfoodeng.2007.02.032
[13] CHENG X F, ZHANG M, ADHIKARI B, ISLAM M N . Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 2014,7(10):2782-2792.
doi: 10.1007/s11947-014-1355-1
[14] KUCNER A, KLEWICKI R, SOJKA M . The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology, 2013,6(8):2031-2047.
doi: 10.1007/s11947-012-0997-0
[15] NOWACKA M, TYLEWICZ U, LAGHI L, ROSA M D, WITROWA- RAJCHERT D . Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 2014,144(2):18-25.
doi: 10.1016/j.foodchem.2013.05.129 pmid: 24099537
[16] BELLARY A N, RASTOGI N K . Effect of hypotonic and hypertonic solutions on impregnation of curcuminoids in coconut slices. Innovative Food Science & Emerging Technologies, 2012,16(39):33-40.
doi: 10.1016/j.ifset.2012.04.003
[17] 马空军, 贾殿赠, 包文忠, 赵文新, 靳冬民, 孙文磊 . 超声场强化渗透脱水传质机理模型研究, 食品科学, 2011,32(13):94-101.
MA K J, JIA D Z, BAO W Z, ZHAO W X, JIN D M, SUN W L . Mass transfer mechanism and mathematical model for ultrasonic-enhanced osmotic dehydration. Food science, 2011,32(13):94-101. (in Chinese)
[18] 李军生, 何仁, 侯革非, 阎柳娟 . 超声波对果蔬渗糖及组织细胞的影响. 食品与发酵工业, 2002,28(8):32-36.
doi: 10.3321/j.issn:0253-990X.2002.08.008
LI J S, HE R, HOU G F, YAN L J . Effect of ultrasonic wave on sugar permeability and cell tissue completeness of candied fruit and vegetable. Food and fermentation industry, 2002,28(8):32-36. (in Chinese)
doi: 10.3321/j.issn:0253-990X.2002.08.008
[19] 李兴武, 章黎黎 . 渗糖方式对脆红李果脯品质及香气的影响. 食品研究与开发, 2017,38(21):79-84.
doi: 10.3969/j.issn.1005-6521.2017.21.016
LI X W, ZHANG L L . Effects of infiltration method on the quality and aroma of crisp red plum. Food Research and Development, 2017,38(21):79-84. (in Chinese)
doi: 10.3969/j.issn.1005-6521.2017.21.016
[20] 尹晓峰, 杨明金, 张引航, 高博, 谢守勇, 杨玲 . 辣椒渗透脱水处理及渗后热风干燥特性及品质分析. 食品科学, 2017,38(1):27-34.
doi: 10.7506/spkx1002-6630-201701005
YIN X F, YANG M J, ZHANG Y H, GAO B, XIE S Y, YANG L . Characterization of osmotic dehydration and subsequent hot-air drying of Chili pepper. Food science, 2017,38(1):27-34. (in Chinese)
doi: 10.7506/spkx1002-6630-201701005
[21] 孙海涛, 邵信儒, 姜瑞平, 徐晶, 孙艳雪, 朱炎, 朱俊义 . 响应面试验优化超声渗糖制备野生软枣猕猴桃果脯工艺及其质构分析. 食品科学, 2015,36(20):49-55.
doi: 10.7506/spkx1002-6630-201520009
SUN H T, SHAO X R, JIANG R P, XU J, SUN Y X, ZHU Y, ZHU J Y . Optimization of ultrasound-assisted sugar permeation for production of preserved Actinidia arguta by response surface methodology and texture analysis. Food science, 2015,36(20):49-55. (in Chinese)
doi: 10.7506/spkx1002-6630-201520009
[22] 李薇 . 低糖猕猴桃果脯的加工工艺与工厂设计研究[D]. 西安: 西北大学, 2013.
LI W . Study on processing technology and factory design of low sugar Kiwi fruit[D]. Xi’an: Northwest University, 2013. (in Chinese)
[23] 李文峰, 肖旭霖, 王玮 . 紫薯气体射流冲击干燥效率及干燥模型的建立. 中国农业科学, 2013,46(2):356-366.
doi: 10.3864/j.issn.0578-1752.2013.02.015
LI W F, XIAO X L, WANG W . Drying characteristics and model of purple sweet potato in air-impingement jet dryer. Scientia Agricultura Sinica, 2013,46(2):356-366. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.02.015
[24] 赵洪卫, 韩东海, 宋曙辉, 常冬 . 小型西瓜果实成熟度表征因子筛选. 农业工程学报, 2012,28(17):281-286.
doi: 10.3969/j.issn.1002-6819.2012.17.041
ZHAO H W, HAN D H, SONG S H, CHANG D . Screening of maturity characterization factors for mini watermelon fruit. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(17):281-286. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.17.041
[25] 靳志强, 王顺喜 . 基于品质评价的玉米微波灭霉工艺参数选择. 农业机械学报, 2013,44(4):163-170.
doi: 10.6041/j.issn.1000-1298.2013.04.029
JIN Z Q, WANG S X . Parameter selection of mould inactivation by microwave processing based on quality evaluation of maize. Journal of Agricultural Machinery, 2013,44(4):163-170. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2013.04.029
[26] 张唐伟, 贺继峰, 余耀斌, 次顿 . 岗巴羊羊肉营养品质及其因子分析. 食品工业科技, 2018,39(8):279-284.
ZHANG T W, HE J F, YU Y B, CI D . Mutton quality and its factor analysis of Gangba sheep. Science and Technology of Food Industry, 2018,39(8):279-284. (in Chinese)
[27] 吕健, 刘璇, 毕金峰, 周林燕, 吴昕烨 . 桃变温压差膨化脆片品质评价研究. 中国农业科学, 2016,49(4):802-812.
doi: 10.3864/j.issn.0578-1752.2016.04.019
LÜ J, LIU X, BI J F, ZHOU L Y, WU X Y . Research on the quality evaluation for peach and nectarine chips by explosion puffing drying. Scientia Agricultura Sinica, 2016,49(4):802-812. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.019
[28] 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧 . 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010,43(12):2491-2499.
MA Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X . Factors analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. Dongzao) advanced selections. Scientia Agricultura Sinica, 2010,43(12):2491-2499. (in Chinese)
[29] 曾凡杰, 孟莉, 吕远平 . 不同前处理和冻结方式对猕猴桃片干制品品质的影响. 食品科技, 2017,42(8):63-68.
ZENG F J, MENG L, LV Y P . Effect of different pre-processing and freezing methods on the dry products quality of kiwi fruit slices. Food Technology, 2017,42(8):63-68. (in Chinese)
[30] 杨玲, 张彩霞, 丛佩华, 程云, 王强 . 基于质地多面分析法对不同苹果品种果肉质构特性的分析. 食品科学, 2014,35(21):57-62.
doi: 10.7506/spkx1002-6630-201421012
YANG L, ZHANG C X, CONG P H, CHENG Y, WANG Q . Texture parameters of different apple varieties’ flesh as measured by texture profile analysis. Food Science, 2014,35(21):57-62. (in Chinese)
doi: 10.7506/spkx1002-6630-201421012
[31] 张鹏飞, 吕健, 毕金峰, 刘璇, 周林燕, 关云静, 肖敏 . 超声及超声渗透预处理对红外辐射干燥特性研究. 现代食品科技, 2016,32(11):197-202.
ZHANG P F, LV J, BI J F, LIU X, ZHOU L Y, GUAN Y J, XIAO M . Effect of ultrasound and ultrasound-assisted osmotic dehydration on infrared radiation drying characteristics of peach slices. Modern Food Technology, 2016,32(11):197-202. (in Chinese)
[32] 李茜, 高纯阳, 安辛欣, 胡秋辉 . 杏鲍菇脆片加工中超声浸渍工艺的优化. 食品工业科技, 2014,35(14):287-292.
doi: 10.13386/j.issn1002-0306.2014.14.055
LI Q, GAO C Y, AN X X, HU Q H . Optimization of ultrasonic immersion technology for Pleurotus eryngii chips. Food Industry Technology, 2014,35(14):287-292. (in Chinese)
doi: 10.13386/j.issn1002-0306.2014.14.055
[33] MULET A, CÁRCEL J A, SANJUÁN N, BON J . New food drying technologies-use of ultrasound. Food Science and Technology International, 2003,9(3):215-221.
doi: 10.1177/1082013203034641
[34] 罗登林, 杨园园, 吴若言, 徐宝成, 聂英, 李佩艳, 刘建学 . 超声辅助面团醒发对面条品质的影响. 食品科学, 2019,40(1):102-107.
LUO D L, YANG Y Y, WU N Y, XU B C, NIE Y, LI P Y, LIU J X . Effect of power ultrasound assisted dough resting on the quality of noodles. Food Science, 2019,40(1):102-107. (in Chinese)
[35] 岳田利, 周郑坤, 袁亚宏, 高振鹏, 张晓荣 . 苹果中有机氯农药残留的超声波去除条件优化. 农业工程学报, 2009,25(12):324-330.
doi: 10.3969/j.issn.1002-6819.2009.12.056
YUE T L, ZHOU Z K, YUAN Y H, GAO Z P, ZHANG X R . Optimization of conditions for organochlorine pesticide residues removal in apples using ultrasonic. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(12):324-330. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2009.12.056
[1] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[2] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[3] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[6] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[7] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[8] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[9] Qi FENG,ChaoZheng LI,GuiTian GAO,You WU,Yan XIAO,WuQi ZHAO,YuShan LEI. Influence of Three Enzymes on Oxidation of Ascorbic Acid in Postharvest 'Hayward' and 'Huate' Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(4): 811-822.
[10] KUANG LiXue,NIE JiYun,LI YinPing,CHENG Yang,SHEN YouMing. Quality Evaluation of ‘Fuji’ Apples Cultivated in Different Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263.
[11] JIA MengKe,WU Zhong,ZHAO WuQi,LU Dan,ZHANG QingAn,ZHANG BaoShan,SONG ShuJie. Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement [J]. Scientia Agricultura Sinica, 2019, 52(15): 2695-2705.
[12] LU Dan,ZHAO WuQi,ZENG XiangYuan,WU Ni,GAO GuiTian,ZHANG QingAn,ZHANG BaoShan,LEI YuShan. The Correlation Between the Stress Relaxation Characteristics and the Quality of ‘Haiwode’ Kiwifruit [J]. Scientia Agricultura Sinica, 2019, 52(14): 2548-2558.
[13] ZHANG Jia, NIE JiYun, ZHANG Hui, LI Jing, LI Ye. Evaluation Indexes for Blueberry Quality [J]. Scientia Agricultura Sinica, 2019, 52(12): 2128-2139.
[14] ZHANG Cheng, WANG QiuPing, ZHOU KaiTuo, WU XiaoMao, LONG YouHua, LI JiaoHong, YIN XianHui. Effects of Intercropping Reineckia Carnea on Soil Enzyme Activity and Kiwifruit Fruit Yield, Quality in Kiwifruit Orchard [J]. Scientia Agricultura Sinica, 2018, 51(8): 1556-1567.
[15] YANG TianGe, DENG Hong, LI Han, MENG YongHong, LEI JiaLei, MA Jing, GUO YuRong . Optimization of Ultra-High Pressure Sterilization Conditions on the Kiwi Fruit Pulp Produced by Cold Crushing Method and Its Sterilization Effect During Storage Period [J]. Scientia Agricultura Sinica, 2018, 51(7): 1368-1377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!