Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (2): 350-358.doi: 10.3864/j.issn.0578-1752.2019.02.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Research Progress of Omics Technologies in Cow Mastitis

LI GuangDong1,LÜ DongYing1,TIAN XiuZhi2,JI PengYun1,GUO JiangPeng3,LU YongQiang3,LIU GuoShi1()   

  1. 1 College of Animal Science and Technology,China Agriculture University,Beijing 100193
    2 Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193
    3 Beijing Animal Husbandry Station,Beijing 100101
  • Received:2017-12-05 Accepted:2017-12-22 Online:2019-01-16 Published:2019-01-21
  • Contact: GuoShi LIU E-mail:gshliu@cau.edu.cn

Abstract:

Dairy mastitis, a common and complex disease with a high incidence, takes its toll on the development of world dairy industry, brings economic losses of billions of dollars per year. Clinical and subclinical mastitis, caused by pathogens such as Staphylococcus aureus, Escherichia coli and Streptococcus agalactiae, posed a huge security risk to milk industry. In recent years, with the continuous breakthrough of sequencing technology and decline of sequencing cost, the research of life science has entered into the Omics era. The traditional methods such as histopathological screening, somatic cell counting, milk PH value detection, detection of milk conductivity, enzyme activity test, infrared thermal imaging can be employed for clinical diagnosis of dairy cow mastitis, but these methods are not powerful enough to elucidate the pathogenesis in a cellular or molecular view. Omics technologies are mainly composed of genomics, proteomics and metabolomics. Genomics can not only reveal the phenotypic variation and genetic basis of the complex trait of dairy mastitis at the transcriptional level, but also reveal the molecular patterns of the mastitis from the aspects of transcriptional regulation (miRNAs, LncRNAs, etc.) and epigenetic modification (DNA methylation, histone modification, etc.). Genomic analysis of mastitis can also dig out the related changes of DNA, RNA and the rules of multi-molecule interaction, which accounts for a better understanding of the immune mechanism of the host against the pathogen, so as to screen and identify the signal pathways and key candidate genes of mastitis resistance, thus improving the accuracy of genome prediction or selection. Proteomics can not only compare milk protein type and abundance but also analyze protein interaction and post-translational modification in breast tissues under different states and environments. The differentially expressed proteins are annotated by COG (Cluster of Orthologous Groups of protein) function followed by database comparison, GO and Pathway enrichment analysis, which help bring to light the complex regulatory mechanism of mastitis occurrence and defense process at protein level. Proteomic analysis can also be used to find molecular marker of mastitis diagnosis, which will provide a potential precise target for the development of therapeutic drugs. Metabolomics, an important part of the system biology, can detect metabolites of low molecular weight (such as amino acids, lipids, carbohydrates, etc.) of the specific tissues or organs in specific environment or specific physiological states. Efficient qualitative and quantitative analysis will elucidate the relevant metabolic pathways. As the ultimate downstream of gene expression, metabolomics technology enables small changes in gene expression and protein synthesis to be amplified at metabolite levels to fully reflect cellular functions, whose application in dairy mastitis will be able to identify related biomarkers and reveal the physiological and pathological changes of dairy breasts. In conclusion, applying Omics or multi-Omics association analysis techniques to mastitis can further reveal the pathogenic defense mechanism, which will provide valuable reference for disease prediction, diagnosis and treatment. This paper reviews the latest research progress about application of Omics in the field of cow mastitis, aiming to provide solid theoretical bases and practical references for cow health and safety of dairy industry in China.

Key words: Omics, cow, mastitis

[1] THOMPSON-CRISPI K, ATALLA H, MIGLIOR F, MALLARD B A . Bovine mastitis: frontiers in immunogenetics. Frontiers in Immunology, 2014,5:493.
[2] GODDEN S M, ROYSTER E, KNAUER W, SORG J, LOPEZ- BENAVIDES M, SCHUKKEN Y, LEIBOWITZ S, FRENCH E A . Randomized noninferiority study evaluating the efficacy of a postmilking teat disinfectant for the prevention of naturally occurring intramammary infections. Journal of Dairy Science, 2016,99(5):3675-3687.
doi: 10.3168/jds.2015-10379
[3] DAHL M O, MAUNSELL F P, DE VRIES A, GALVAO K N, RISCO C A, HERNANDEZ J A . Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies. Journal of Dairy Science, 2017,100(10):8322-8329.
doi: 10.3168/jds.2017-12711
[4] FRANCOZ D, WELLEMANS V, DUPRÉ J P, ROY J P, LABELLE F, LACASSE P, DUFOUR S . Invited review: A systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows. Journal of Dairy Science, 2017,100(10):7751-7770.
doi: 10.3168/jds.2016-12512
[5] PILLA R, MALVISI M, SNEL G G, SCHWARZ D, KÖNIG S, CZERNY C P, PICCININI R . Differential cell count as an alternative method to diagnose dairy cow mastitis. Journal of Dairy Science, 2013,96(3):1653-1660.
doi: 10.3168/jds.2012-6298
[6] HERTL J A, SCHUKKEN Y H, WELCOME F L, TAUER L W, GRÖHN Y T . Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. Journal of Dairy Science, 2014,97(3):1465-1480.
doi: 10.3168/jds.2013-7266
[7] REYES J, CHAFFER M, SANCHEZ J, TORRES G, MACIAS D, JARAMILLO M, DUQUE P C, CEBALLOS A, KEEFE G P . Targeting human pathogenic bacteria by siderophores A proteomics review. Journal of Dairy Science, 2015,98(8):5294-5303.
doi: 10.3168/jds.2014-9199
[8] ROWBOTHAM R F, RUEGG P L . Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows. Journal of Dairy Science, 2016,99(6):4707-4717.
doi: 10.3168/jds.2015-10675
[9] TAPONEN S, LISKI E, HEIKKILÄ A M, PYÖRÄLÄ S . Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci,Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. Journal of Dairy Science, 2017,100(1):493-503.
[10] GAO J, BARKEMA H W, ZHANG L, LIU G, DENG Z, CAI L, SHAN R, ZHANG S, ZOU J, KASTELIC J P, HAN B . Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. Journal of Dairy Science, 2017,100(6):4797-4806.
doi: 10.3168/jds.2016-12334
[11] HERRY V, GITTON C, TABOURET G, RÉPÉRANT M, FORGE L, TASCA C, GILBERT F B, GUITTON C, STAUB C, SMITH D G, GERMON P, FOUCRAS G, RAINARD P 。 Local immunization impacts the response of dairy cows to Escherichia coli mastitis. Scientific Reports, 2017,7(1):3441.
[12] SANTOS R I, ZUNINO P M, GIL A D, LAPORT A, HIRIGOYEN D J . Antibiotic resistance of Staphylococcus aureus associated with subclinical and clinical mastitis in Uruguay during an eight-year period. Austral Journal of Veterinary Sciences, 2017,49(3):191-194.
[13] LEELAHAPONGSATHON K, SCHUKKEN Y H, PINYOPUMMINTR T, SURIYASATHAPORN W . Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections. Journal of Dairy Science, 2016,99(2):1418-1426.
[14] ORTEA I, O'CONNOR G, MAQUET A . Review on proteomics for food authentication. Journal of Proteomics, 2016,147:212-225.
doi: 10.1016/j.jprot.2016.06.033
[15] FERREIRA D, SECA A M C G A D, SECA A M . Targeting human pathogenic bacteria by siderophores: A proteomics review. Journal of Proteomics, 2016,145:153-166.
doi: 10.1016/j.jprot.2016.04.006
[16] TALWAR D, TSENG T S, FOSTER M, XU L, CHEN L S . Genetics/genomics education for nongenetic health professionals: a systematic literature review. Genetics in Medicine, 2017,19(7):725-732.
doi: 10.1038/gim.2016.156
[17] CHEN R, MIAS G I, LI-POOK-THAN J, JIANG L, LAM H Y, CHEN R, MIRIAMI E, KARCZEWSKI K J, HARIHARAN M, DEWEY F E, CHENG Y, CLARK M J, IM H, HABEGGER L, BALASUBRAMANIAN S, O'HUALLACHAIN J T, HILLENMEYER S, HARAKSINGH R, SHARON D, EUSKIRCHEN G, LACROUTE P, BETTINGER K, BOYLE A P, KASOWSKI M, GRUBERT F, SEKI S, GARCIA M, WHIRL-CARRILLO M, GALLARDO M, BLASCO M A, GREENBERG P L, SNYDER P, KLEIN T E, ALTMAN R B, BUTTE A J, ASHLEY E A, GERSTEIN M, NADEAU K C, TANG H, SNYDER M . Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 2012,148(6):1293-1307.
doi: 10.1016/j.cell.2012.02.009
[18] JOYCE A R, PALSSON B O . The model organism as a system: integrating 'omics' data sets. Nature Reviews Molecular Cell Biology, 2006,7(3):198-210.
doi: 10.1038/nrm1857
[19] GEHLENBORG N, O'DONOGHUE S I, BALIGA N S, GOESMANN A, HIBBS M A, KITANO H, KOHLBACHER O, NEUWEGER R, TENENBAUM D, GAVIN A C, . Visualization of omics data for systems biology. Nature Methods, 2010,7(3 Suppl):S56-S68.
doi: 10.1038/nmeth.1436
[20] PATTI G J, YANES O, SIUZDAK G . Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 2012,13(4):263-269.
doi: 10.1038/nrm3314
[21] VAN EMON J M . The Omics Revolution in Agricultural Research. Journal of Agricultural and Food Chemistry, 2016,64(1):36-44.
doi: 10.1021/acs.jafc.5b04515
[22] GOBERT M, SAYD T, GATELLIER P, SANTÉ-LHOUTELLIER V . Application to proteomics to understand and modify meat quality. Meat Science, 2014,98(3):539-543.
doi: 10.1016/j.meatsci.2014.06.035
[23] KAMATH P L, FOSTER J T, DREES K P, LUIKART G, QUANCE C, ANDERSON N J, CLARKE P R, COLE E K, DREW M L, EDWARDS W H, RHYAN J C, TREANOR J J, WALLEN R L, WHITE P J, ROBBE-AUSTERMAN S, CROSS P C . Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nature Communications, 2016,7:11448.
doi: 10.1038/ncomms11448
[24] 孙雨航, 许楚楚, 李昌盛, 夏成, 徐闯, 吴凌, 张洪友 . 基于1H NMR 技术的乳热奶牛血清代谢组学分析. 中国农业科学, 2015,48(2):362-369.
SUN Y H, XU C C, LI C S, XIA C, XU C, WU L, ZHANG H Y . 1H NMR-based serum Metabolomics analysis of dairy cows with milk fever. Scientia Agricultura Sinica, 2015,48(2):362-369. (in Chinese)
[25] 李亚娟, 王东升, 张世栋, 严作廷, 杨志强, 杜玉兰, 董书伟, 何宝祥 . 基于GC-MS 技术的蹄叶炎奶牛血浆代谢谱分析. 中国农业科学, 2016,49(21):4255-4264.
LI Y J, WANG D S, ZHANG S D, YAN Z T, YANG Z Q, DU Y L, DONG S W, HE B X . Plasma metabolic profiling analysis of dairy cows with laminitis based on GC-MS. Scientia Agricultura Sinica, 2016,49(21):4255-4264. (in Chinese)
[26] GOLDANSAZ S A, GUO A C, SAJED T, STEELE M A, PLASTOW G S, WISHART D S . Livestock metabolomics and the livestock metabolome: A systematic review. PLoS One, 2017,12(5):e0177675.
doi: 10.1371/journal.pone.0177675
[27] GUILLEMIN N, HORVATIĆ A, KULEŠ J, GALAN A, MRLJAK V, BHIDE M . Omics approaches to probe markers of disease resistance in animal sciences. Molecular BioSystems, 2016,12(7):2036-2046.
doi: 10.1039/C6MB00220J
[28] ADDIS M F, TANCA A, UZZAU S, OIKONOMOU G, BICALHO R C, MORONI P . The bovine milk microbiota: insights and perspectives from-omics studies. Molecular BioSystems, 2016,12(8):2359-2372.
doi: 10.1039/C6MB00217J
[29] THOMAS F C, MUDALIAR M, TASSI R, MCNEILLY T N, BURCHMORE R, BURGESS K, HERZYK P, ZADOKS R N, ECKERSALL P D . Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 3. Untargeted metabolomics. Molecular BioSystems, 2016,12(9):2762-2769.
[30] HETTINGA K A DE BOK F A LAM T J . Short communication: Practical issues in implementing volatile metabolite analysis for identifying mastitis pathogens. Journal of Dairy Science, 2015,98(11):7906-7910.
doi: 10.3168/jds.2015-9720
[31] SUNDEKILDE U K, POULSEN N A, LARSEN L B, BERTRAM H C . Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. Journal of Dairy Science, 2013,96(1):290-299.
doi: 10.3168/jds.2012-5819
[32] DERVISHI E, ZHANG G, DUNN S M, MANDAL R, WISHART D S, AMETAJ B N . GC-MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows. Journal of Proteome Research, 2017,16(2):433-446.
doi: 10.1021/acs.jproteome.6b00538
[33] XI X, KWOK L, WANG Y, MA C, MI Z, ZHANG H . Ultra- performance liquid chromatography-quadrupole-time of flight mass spectrometry MS E-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis. Journal of Dairy Science, 2017,100(6):4884-4896.
doi: 10.3168/jds.2016-11939
[34] 徐闯, 朱奎玲, 陈媛媛, 杨威, 夏成, 张洪友, 吴凌, 舒适, 沈泰钰, 于洪江, 许秋实, 张子扬 . 应用 SELDI-TOF-MS 技术对患脂肪肝奶牛血浆差异蛋白的分离鉴定及生物信息学特征. 中国农业科学, 2016,49(8):1585-1598.
XU C, ZHU K L, CHEN Y Y, YANG W, XIA C, ZHANG H Y, WU L, SHU S, SHEN T Y, YU H J, XU Q S, ZHANG Z Y . Isolation identification and bioinformatics of differences protein in plasma of cows suffer from fatty liver with SELDI-TOF-MS techniques. Scientia Agricultura Sinica, 2016,49(8):1585-1598. (in Chinese)
[35] THOMAS F C, MULLEN W, TASSI R, RAMÍREZ-TORRES A, MUDALIAR M, MCNEILLY T N, ZADOKS R N, BURCHMORE R, ECKERSALL P D . Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Molecular BioSystems, 2016,12(9):2735-2747.
[36] MUDALIAR M, TASSI R, THOMAS F C, MCNEILLY T N, WEIDT S K, MCLAUGHLIN M, WILSON D, BURCHMORE R, HERZYK P, ECKERSALL P D, ZADOKS R N . Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics. Molecular BioSystems, 2016,12(9):2748-2761.
[37] MANSOR R, MULLEN W, ALBALAT A, ZEREFOS P, MISCHAK H, BARRETT D C, BIGGS A, ECKERSALL P D . A peptidomic approach to biomarker discovery for bovine mastitis. Journal of Proteomics, 2013,85:89-98.
doi: 10.1016/j.jprot.2013.04.027
[38] ZHAO X W, YANG Y X, HUANG D W, Cheng G L, Zhao H L . Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis. Journal of Veterinary Science, 2015,16(3):253-263.
[39] JACOB T, SUBRAMANI G, SIVAPRAKASAM P, XAVIER A P, MUKHOPADHYAY H K . Immuno-detection of C3a, a C3 complement activated product in mastitis milk, a potential Diagnostic marker. Journal of Veterinary Science, 2017,4(1):13.
[40] HUANG J, LUO G, ZHANG Z, WANG X, JU Z, QI C, ZHANG Y, WANG C, LI R, LI J, YIN W, XU Y, MOISÁ S J, LOOR J J , ZHONG J. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics, 2014,15:839.
doi: 10.1186/1471-2164-15-839
[41] LIPPOLIS J D, HOLMAN D B, BRUNELLE B W, THACKER T C, BEARSON B L, REINHARDT T A, SACCO1 R E, CASEY T A . Genomic and transcriptomic analysis ofEscherichia coli strains associated with persistent and transient bovine mastitis and the role of Colanic Acid. Infection and Immunity, 2017,IAI: 00566-17.
[42] CAPRA E, CREMONESI P, PIETRELLI A, PUCCIO S, LUINI M, STELLA A, CASTIGLIONI B . Genomic and transcriptomic comparison between Staphylococcus aureus strains associated with high and low within herd prevalence of intra-mammary infection. BMC microbiology, 2017,17(1):21.
[43] TIEZZI F, PARKER-GADDIS K L, COLE J B, CLAY J S, MALTECCA C .A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS One, 2015,10(2):e114919.
[44] WANG X, MA P, LIU J, ZHANG Q, ZHANG Y, DING X, JIANG L, WANG Y, ZHANG Y, SUN D, ZHANG S, SU G, YU Y . Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genetics, 2015,16(1):111.
[45] BRAND B, HARTMANN A, REPSILBER D, GRIESBECK-ZILCH B, WELLNITZ O, KÜHN C, PONSUKSILI S, MEYER H H, SCHWERIN M . Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score。 Genetics Selection Evolution, 2011,43(1):24.
[46] IM J, LEE T, JEON J H, BAIK J E, KIM K W, KANG S S, YUN C H, KIM H, HAN S H . Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from Staphylococcus aureus. International Immunopharmacology, 2014,21(1):231-240.
[47] XIU L, FU Y B, DENG Y, SHI XJ, BIAN ZY, RUHAN A, WANG X . Deep sequencing-based analysis of gene expression in bovine mammary epithelial cells afterStaphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae infection. Genetics and Molecular Research, 2015,14(4):16948-16965.
[48] WANG X G, JU Z H, HOU M H, JIANG Q, YANG C H, ZHANG Y, SUN Y, LI R L, WANG C F, ZHONG J F, HUANG J M . Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus Mastitis. PLoS One, 2016,11(7):e159719.
[49] WANG X, XIU L, HU Q, CUI X, LIU B, TAO L, WANG T, WU J, CHEN Y, CHEN Y . Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains. PLoS One, 2013,8(12):e82117.
[50] PU J, LI R, ZHANG C, CHEN D, LIAO X, ZHU Y, GENG X, JI D, MAO Y, GONG Y, YANG Z . Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae- induced mastitis. Journal of Dairy Research, 2017,84(3):300-308.
doi: 10.1017/S0022029917000437
[51] FANG L, HOU Y, AN J, LI B, SONG M, WANG X, SØRENSEN P, DONG Y, LIU C, WANG Y, ZHU H, ZHANG S, YU Y . Genome-eide transcriptional and post-transcriptional regulation of iInnate immune and defense responses of bovine mammary gland to Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 2016,6:193.
[52] FANG L, SAHANA G, SU G, YU Y, ZHANG S, LUND M S, SØRENSEN P . Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle. Scientific Reports, 2017,7:45560.
doi: 10.1038/srep45560
[53] JIN W IBEAGHA-AWEMU E M LIANG G BEAUDOIN F ZHAO X GUAN L L . Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics, 2014,15(1):181.
[54] VANSELOW J, YANG W, HERRMANN J, ZERBE H, SCHUBERTH H J, PETZL W, TOMEK W, SEYFERT H M . DNA-remethylation around a STAT5-binding enhancer in the S1-casein promoter is associated with abrupt shutdown of S1-casein synthesis during acute mastitis. Journal of Molecular Endocrinology, 2006,37(3):463-477.
doi: 10.1677/jme.1.02131
[55] WANG X S, ZHANG Y, HE Y H, MA P P, FAN L J, WANG Y C, ZHANG Y I, SUN D X, ZHANG S L, WANG C D, SONG J Z, YU Y . Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitis dairy cows. Genetics and Molecular Research, 2013,12(4):6228-6239.
doi: 10.4238/2013.December.4.10
[56] SONG M, HE Y, ZHOU H, ZHANG Y, LI X, YU Y . Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Scientific Reports, 2016,6(1):29390.
[57] HE Y, SONG M, ZHANG Y, LI X, SONG J, ZHANG Y, YU Y . Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 2016,17(1):565.
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[7] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[8] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[9] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[10] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[11] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[12] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[13] CHEN Zhi,ZHANG Yi,LU QinYue,GUO JiaHe,LIANG Yan,ZHANG MingYiXing,YANG ZhangPing. Effect and Mechanism of Tea Tree Oil on LPS Induced Mastitis in Dairy Cows [J]. Scientia Agricultura Sinica, 2021, 54(14): 3124-3133.
[14] SONG MeiJie,OU AiQun,XUE XiaoFeng,WU LiMing,SHOU QiYang,WANG Kai. Protective Effects of Chinese Propolis Extract Against Lipopolysaccharide- Induced Acute Mastitis and Mammary Barrier Functions in Mice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2675-2688.
[15] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!