Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4522-4534.doi: 10.3864/j.issn.0578-1752.2018.23.011

• HORTICULTURE • Previous Articles     Next Articles

Cloning, Characterization and Expression Analysis of K +/H + Antiporter Genes in Grape

WANG ZhuangWei1(),WANG QingLian1,XIA Jin1,WANG XiCheng1,SONG ZhiZhong1,2(),WU WeiMin1   

  1. 1Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing 210014
    2School of Agriculture, Ludong University, Yantai 264025, Shandong
  • Received:2018-05-14 Accepted:2018-06-21 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】 Isolation and characterization of KEA family genes from grape. Analysis of the tissue-specific expression patterns of KEA family genes and response to K + depletion, ABA, NaCl and sorbitol treatments. Screen the potential major KEA genes in grape. 【Method】 By carrying out homology-based cloning, putative KEA family genes were isolated and characterized from grape. A phylogenetic tree was constructed by multiple alignment of KEA family proteins from 9 known plants (grape, Arabidopsis, rice, maize, sorghum, slender false brome, polar, pear, and apple) using the neighbor-joining method via MEGA7.0 software. Details of grape KEA family genes and encoded proteins were analyzed with the help of bioinformatical analysis softwares. By screening the EST database, electrical expression profiles of grape KEA genes were determined. Quantitative real-time PCR (qRT-PCR) was carried out to analyze the expression patterns of KEA family genes and response to K + depletion, ABA, NaCl, and sorbitol treatments, and obtained the major genes. 【Result】 Four KEA family genes were isolated from grape, entitled by VvKEA1VvKEA4, which were all containing the K/H exchanger and TrkA-N functional domains that belonging to the classic plant KEA family antiporters. The amino acid sequences of KEA proteins from 9 plants shared an overall identity of 33.10%. These KEA members were classified into 2 major groups (Groups Ⅰ and Ⅱ), and VvKEA1and VvKEA2 belong to Group Ⅰ that containing 7 Motifs, while VvKEA3 and VvKEA4 belong to GroupⅡ that just containing 4 Motifs. Phylogenetic tree analysis showed that VvKEA1, VvKEA 2 and VvKEA 4 of grape were closely clustered with AtKEA2, AtKEA 3 and AtKEA 5 of Arabidopsis, respectively, and VvKEA3 was clustered with PbrKEA5 of pear and MdoKEA7 of apple. KEA members of 4 grass family plants (rice, maize, sorghum and slender false brome) were prone to clustered together, while three woody plants (polar, apple and pear) KEA members were prone to clustered together. Mainly localized in plasma membrane, all predicted VvKEA proteins possessed similar tertiary structures, contained 12 or 13 transmembrane domains (TMs), and the theoretical isoelectric point (pI) were all less than 7.0. In particular, only VvKEA3 possessed the signal peptide. Fifteen cis-acting regulatory elements, including the stress response, nutrition and development, hormone response and circadian rhythm regulations, et al., were identified in the promoter region of VvKEA genes. Expression profile analysis showed that VvKEA family genes were expressed in different tissues or organs in grape, and the highest percentage was predicted in fruit, followed by leaf, seed, root and pistil. qRT-PCR analysis showed that VvKEA3 was the most abundant expressed gene during different parts of 8-year-old ‘Rosario Bianco’ on the whole, especially in fruitlet, and the other 3 genes were less expressed with similar amount. In grape seedlings, VvKEA1VvKEA4 genes were more sensitive to ABA treatment, whose expression were all induced in both tested shoots and roots, but had no response to NaCl treatment. The expression of VvKEA3 in both shoots and roots and VvKEA1 in shoots were up-regulated by K + depletion treatment, and the expression of VvKEA3 in both shoots and roots and VvKEA4 in roots were increased by sorbitol treatment. 【Conclusion】 Four predicted KEA family genes were cloned and characterized from grape, which were majorly expressed in fruit, leaf and seed. Notably, VvKEA3 was the most abundant gene in 8-year old grape tree, especially in fruitlet, whose expression was prone to be regulated by K + depletion, ABA, and sorbitol osmotic stress. VvKEA3 may be a crucial K +/H + antiporter during grape fruit development.

Key words: grape, K +/H + antiporter, bioinformatics analysis, stress treatment

Table 1

Specific primers used for qRT-PCR"

基因
Gene
引物
Primer (5’-3’)
扩增产物大小Amplicon size (bp)
VvKEA1 F: GTCAATGGCACTAACCCCCT
R: TCATAAAAATGATGTACCTGAC
171
VvKEA2 F: GGTACTGTTGCGGTGGTTCT
R:TCATGAGAGCCTTGGACCATC
114
VvKEA3 F: GGTGACGACTCCTGTCCTGT
R: ACGGAAGCTCTCTCCTCATTC
111
VvKEA4 F: GACTGATGAAGAAGCTTCCCT
R: ACCAGCAGCCAAGTAACCAA
121
Ubiquitin F: CCTCATCTTCGCTGGCAAAC
R: GGTGTAGGTCTTCTTCTTGCG
133

Table 2

Basic informations of KEA family members in grape"

基因
Gene
GenBank
登录号
GenBank No.
染色体定位
Chromosome location
内含子数目
Intron No.
基序数目
Motif No.
亚族
Group
等电点
pI
跨膜区Transmemberane
regions
不稳定性指数
Instability index
信号肽
Signal peptide
VvKEA1 MH118299 Chr.15:19993952..20009808 forward 17 4 6.60 13 33.27稳定Stable 无No
VvKEA2 MH118298 Chr.Un:21024004..21038616 forward 13 4 6.37 13 32.04稳定Stable 无No
VvKEA3 MH118297 Chr.16:14444939..14477574 reverse 19 7 5.83 12 28.87稳定Stable 有,第1—26氨基酸
Yes, amino acids of 1-26
VvKEA4 MH118300 Chr.11:1922070..1943368 forward 19 7 6.32 12 29.59稳定Stable 无No

Table 3

Information of nine plant KEA family proteins"

物种
Species
蛋白
Protein
GenBank登录号
GenBank No.
编码区
CDS (bp)
氨基酸数目
Amino acid No.
分子量
Molecular weight (kD)
葡萄(4)
Vitis vinifera (4)
VvKEA1 MH118299 1836 612 64.50
VvKEA2 MH118298 1689 563 61.41
VvKEA3 MH118297 1731 577 62.48
VvKEA4 MH118300 1569 522 56.21
拟南芥(6)
Arabidopsis thaliana (6)
AtKEA1 At1g01790 3582 1194 128.03
AtKEA2 At4g00630 3525 1175 126.15
AtKEA3 At4g04850 1914 638 69.04
AtKEA4 At2g19600 1779 593 64.24
AtKEA5 At5g51710 1707 569 61.59
AtKEA6 At5g11800 1794 598 64.39
水稻(6)
Oryza sativa (6)
OsKEA1 Os06g36590 1884 628 66.21
OsKEA2 Os05g31730 1362 453 46.15
OsKEA3 Os08g43690 2454 817 87.82
OsKEA4 Os09g37300 2484 827 88.97
OsKEA5 Os04g58620 3465 1154 123.82
OsKEA6 Os12g42300 2376 792 85.34
玉米(8)
Zea mays (8)
ZmKEA1 GRMZM2G169114 1848 616 65.62
ZmKEA2 GRMZM2G171031 1872 624 66.03
ZmKEA3 GRMZM2G020610 2232 744 80.54
ZmKEA4 GRMZM2G430755 2460 820 88.35
ZmKEA5 GRMZM2G105219 2424 808 86.86
ZmKEA6 GRMZM2G058948 2529 843 90.14
ZmKEA7 GRMZM2G093643 3099 1033 110.83
ZmKEA8 GRMZM2G009715 1941 647 69.76
高粱(7)
Sorghum bicolor (7)
SbKEA1 Sb01g048670 1734 578 61.85
SbKEA2 Sb10g022170 1860 620 65.76
SbKEA3 Sb09g018910 1398 466 47.28
SbKEA4 Sb07g024760 2454 818 88.35
SbKEA5 Sb02g031690 2661 887 95.82
SbKEA6 Sb08g021840 2340 780 83.76
SbKEA7 Sb06g033310 3504 1168 124.64
短柄草(5)
Brachypodium distachyon (5)
BdKEA1 Bradi1g37860 1830 610 65.10
BdKEA2 Bradi2g26740 1368 456 46.46
BdKEA3 Bradi3g42260 2508 836 88.82
BdKEA4 Bradi5g26820 3492 1164 123.70
BdKEA5 Bradi4g01430 2337 779 83.60
表3 Continued table 3
物种
Species
蛋白
Protein
GenBank登录号
GenBank No.
编码区
CDS (bp)
氨基酸数目
Amino acid No.
分子量
Molecular weight (kD)
白杨(4)
Populus trichocarpa (4)
PtKEA1 Potri.002G157200.1 3645 1215 87.83
PtKEA2 Potri.014G080800.1 3648 1216 130.80
PtKEA3 Potri.009G080800.1 2469 823 89.30
PtKEA4 Potri.012G130500.1 1752 584 64.05
梨(12)
Pyrus bretschneideri (12)
PbKEA1 Pbr001286.1 3678 1226 132.42
PbKEA2 Pbr004889.1 2229 743 80.16
PbKEA3 Pbr007039.1 2298 766 82.83
PbKEA4 Pbr009904.1 2301 767 82.91
PbKEA5 Pbr015588.2 1674 558 60.26
PbKEA6 Pbr019828.1 1767 589 62.99
PbKEA7 Pbr031450.1 3183 1061 114.86
PbKEA8 Pbr036088.1 2400 800 86.68
PbKEA9 Pbr036420.2 1743 581 62.20
PbKEA10 Pbr038070.1 1164 388 41.77
PbKEA11 Pbr038477.1 2244 748 81.11
PbKEA12 Pbr041608.1 2514 838 90.54
苹果(7)
Malus domestica (7)
MdKEA1 MDP0000144878 2346 782 121.52
MdKEA2 MDP0000165222 3390 1130 134.60
MdKEA3 MDP0000173207 2949 983 106.80
MdKEA4 MDP0000206618 3009 1003 109.76
MdKEA5 MDP0000244586 3726 1242 85.30
MdKEA6 MDP0000818940 1743 581 41.59
MdKEA7 MDP0000903895 1173 391 62.53

Fig. 1

Identify analysis of grape KEA family proteins"

Fig. 2

The phylogenetic tree of KEA family proteins from nine plants Grape KEA family genes were highlight with red circle, and the red line indicated the boundary between GroupⅠandⅡ"

Fig. 3

Motif and gene structure analysis of grape KEA family members"

Fig. 4

Distinct characteristic sequence and length of Motif"

Fig. 5

Tertiary structure prediction of grape KEA family members"

Table 4

Subcellular localization prediction of KEA family genes in grape"

基因
Gene
细胞质膜
Plasma membrane (%)
内质网膜
Endoplasmic reticulum membrane (%)
液泡膜
Vacuole membrane (%)
VvKEA1 85.72 14.28 -
VvKEA2 85.72 7.14 7.14
VvKEA3 92.86 - 7.14
VvKEA4 78.58 7.14 14.28

Fig. 6

Expression profiles analysis of EST sequence from grape KEA family genes"

Table 5

The cis-elements in the promoter regions of KEA family genes in grape"

顺式作用元件
cis- regulatory elements
VvKEA1 VvKEA2 VvKEA3 VvKEA4
光感应Light 19 17 24 22
胚乳表达
Endosperm expression
4 8 2 5
水杨酸响应Salicylic acid 3 2 2 1
热胁迫Heat stress 1 2 3 3
防御与胁迫
Defense and stress
2 1 1 2
赤霉素响应Gibberellin 2 3 - 2
厌氧感应
Anaerobic induction
- 2 - 2
昼夜规律Circadian 1 - - 2
茉莉酮酸甲酯
Methyl jasmonate
- - 4 2
玉米蛋白代谢
Zein metabolism
1 2 - -
乙烯响应Ethylene - 1 1 -
干旱感应
Drought-inducibility
1 - - 2
脱落酸响应Abscisic acid - - 4 -
低温感应Low temperature - - 1 -
真菌激发子Fungal elicitor - - - 1

Fig. 7

Quantitative RT-PCR expression analysis of VvKEA gene in different tissues ** indicates statistically extremely significant differences at P<0.01. The same as below"

Fig. 8

Response of VvKEA gene under K+ depletion, ABA, NaCl and sorbitol stresses in strawberry seedlings A: Relative expression in shoots; B: Relative expression in roots. * indicates statistically significant differences at P<0.05"

[1] VÉRY A A, SENTENAC H . Molecular mechanisms and regulation of K + transport in higher plants . Annual Review of Plant Biology, 2003,54:575-603.
doi: 10.1146/annurev.arplant.54.031902.134831
[2] GRABOV A . Plant KT/KUP/HAK potassium transporters: Single family - multiple functions. Annals of Botany, 2007,99:1035-1041.
doi: 10.1163/016942409X12598231567862 pmid: 3243584
[3] PALMGREN M G . Plant plasma membrane H +-ATPases: Powerhouses for nutrient uptake . Annual Review of Plant Physiology and Plant Molecular Biology, 2001,52:817-845.
doi: 10.1146/annurev.arplant.52.1.817
[4] FELLE H H . pH: Signal and messenger in plant cells. Plant Biology, 2001,3:577-591.
doi: 10.1055/s-2001-19372
[5] SZE H, SCHUMACHER K, MULLER M L, PADMANABAN S, TAIZ L . A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H +-ATPase . Trends in Plant Science, 2002,7:157-161.
doi: 10.1016/S1360-1385(02)02240-9
[6] FELLE H H . pH regulation in anoxic plants. Annals of Botany, 2005,96:519-532.
doi: 10.1093/aob/mci207 pmid: 4247022
[7] CHANROJ S, LU Y, PADMANABAN S, NANATANI K, UOZUMI N, RAO R, SZE H . Plant-specific cation/H + exchanger 17 and its homologs are endomembrane K + transporters with roles in protein sorting . Journal of Biology Chemistry, 2011,286(39):33931-33941.
doi: 10.1074/jbc.M111.252650
[8] CHANROJ S, WANG G, VENEMA K, ZHANG M W, DELWICHE C F, SZE H . Conserved and diversified gene families of monovalent cation/H + antiporters from algae to flowering plants . Frontiers in Plant Science, 2012,3:25.
doi: 10.3389/fpls.2012.00025 pmid: 3355601
[9] BASSIL E, BLUMWALD E . The ins and outs of intracellular ion homeostasis: NHX-type cation/H + transporters . Current Opinion in Plant Biology, 2014,22:1-6.
doi: 10.1016/j.pbi.2014.08.002 pmid: 25173972
[10] MASER P, THOMINE S, SCHROEDER J I, WARD J M, HIRSCHI K, SZE H, TALKE IN, AMTMANN A, MAATHUIS F J, SANDERS D, HARPER J F, TCHIEU J, GRIBSKOV M, PERSANS M W, SALT DE, KIM S A, GUERINOT M L . Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 2001,126:1646-1667.
doi: 10.1104/pp.126.4.1646 pmid: 11500563
[11] HAN L, LI J L, WANG L, SHI W M, SU Y H . Identification and localized expression of putative K +/H + antiporter genes in Arabidopsis. Acta Physiologiae Plantarum, 2015,37(5):1-14.
doi: 10.1007/s11738-015-1845-4
[12] ARANDA-SICILIA M N, CAGNAC O, CHANROJ S, SZE H, RODRÍGUEZ-ROSALES M P, VENEMA K . Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K +/H + antiporter with a chloroplast transit peptide. BBA-Biomembranes , 2012,1818(9):2362-2371.
doi: 10.1016/j.bbamem.2012.04.011 pmid: 22551943
[13] ZHENG S, PAN T, FAN L G, QIU Q S . A novel AtKEA gene family, homolog of bacterial K +/H + antiporters, plays potential roles in K + homeostasis and osmotic adjustment in Arabidopsis. PLoS ONE , 2013,8(11):e81463.
doi: 10.1371/journal.pone.0081463 pmid: 24278440
[14] ARMBRUSTER U, CARRILLO L R, VENEMA K, PAVLOVIC L, SCHMIDTMANN E, KORNFELD A, JAHNS P, BERRY J A, KRAMER D M, JONIKAS M C . Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nature Communications, 2014,5:5439.
doi: 10.1038/ncomms6439 pmid: 25451040
[15] KUNZ H H, GIERTH M, HERDEAN A, SATOH-CRUZ M, KRAMER D M, SPETEA C, SCHROEDER J I . Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(20):7480-7485.
doi: 10.1073/pnas.1323899111
[16] ZHOU H, QI K, LIU X, YIN H, WANG P, CHEN J, WU J, ZHANG S . Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Molecular Genetics and Genomics, 2016,291:1727-1742.
doi: 10.1007/s00438-016-1215-y pmid: 27193473
[17] 韩蕾, 宋志忠, 王莉, 苏彦华 . 7种植物K +/H +逆向转运体蛋白的生物信息学分析 . 基因组学与应用生物学, 2011,30(3):372-378.
HAN L, SONG Z Z, WANG L, SU Y H . Bioinformatics analysis of 7 plants’ K +/H + antiporters . Genomics and Applied Biology, 2011,30(3):372-378. (in Chinese)
[18] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[19] DEMIRAL M A, KÖSEOGLU A T . Effect of potassium on yield, fruit quality, and chemical composition of green house-grown aalia melon. Journal of Plant Nutrition, 2005,28:93-100.
doi: 10.1081/PLN-200042179
[20] YURTSEVEN E, KESMEZ G D, ÜNLÜKARA A . The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculantum). Agricultural Water Management, 2005,78:128-135.
doi: 10.1016/j.agwat.2005.04.018
[21] HARTZ T K, JOHNSTONE P R, FRANCIS D M, MIYAO E M . Processing tomato yield and fruit quality improved with potassium fertigation. HortScience, 2005,40:1862-1867.
doi: 10.1007/s10658-005-2332-3
[22] 宋志忠, 郭绍雷, 马瑞娟, 俞明亮 . KT/HAK/KUP家族基因在桃开花期的表达及对钾肥施放的响应分析. 中国农业科学, 2015,48(6):1177-1185.
SONG Z Z, GUO S L, MA R J, YU M L . Analysis of expression of KT/HAK/KUP family genes and their responses to potassium fertilizer application during peach flowering. Scientia Agricultura Sinica, 2015,48(6):1177-1185. (in Chinese)
[23] CHEN H T, CHEN X, WU B Y, YUAN X X, ZHANG H M, CUI X Y . Whole-genome identification and expression analysis of K + efflux antiporter (KEA) and Na +/H + antiporter (NHX) families under abiotic stress in soybean . Journal of Integrative Agriculture, 2015,14(6):1171-1183.
doi: 10.1016/S2095-3119(14)60918-7
[24] GUPTA M, QIU X, WANG L, XIE W, ZHANG C J, XIONG L Z, LIAN X M, ZHANG Q F . KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008,280:437-452.
doi: 10.1007/s00438-008-0377-7 pmid: 18810495
[25] SONG Z Z, MA R J, YU M L . Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Genetics and Molecular Research, 2015,14(1):774-787.
doi: 10.4238/2015.January.30.21 pmid: 25730015
[26] ZHANG Z, ZHANG J, CHEN Y, LI R, WANG H, WEI J . Genome- wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Molecular Biology Reports, 2012,39:8465-8473.
doi: 10.1007/s11033-012-1700-2 pmid: 22711305
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[7] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[8] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[9] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[10] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[11] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[12] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[13] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[14] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[15] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!