Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (S): 1-15.doi: 10.3864/j.issn.0578-1752.2015.S.001

    Next Articles

Responses of Migratory Insects to Global Climate Change

FU Xiao-wei, WU Kong-ming   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2015-09-24 Online:2015-10-20 Published:2015-10-20

Abstract: Responses of organisms to global climate change have caused worldwide concern in recent years. Insect is an important group of organisms closely related with agricultural production, and most of them extend their habitat to unfavorable environment by long-distance migration. Many studies showed that migratory insects are much sensitive to adapt the global climate change by regulating their biological phenology, adult’s morphology and geographical distribution patterns. On the one hand, temperature elevation shorted the first appear date of the overwinter generation, as well as the first flight date and the peak date of the migratory generations in a year, while the migration duration prolonged. On the other hand, global warming changes the damage period of migratory insect pests, aggravates its damages and brings new competitions among them. The phenological synchrony between migratory insect pests and its host plants or natural enemies may be changed owing to increased temperature, which thus alters the insect’s occurrence and biological control in the future. This paper reviews the current advances worldwide in the area, and provides an analysis on potential impact of global climate change to population migration and occurrence principles of insect pests in Chinese agricultural regions.

Key words: global climate change, migratory insects, ecological responses, biodiversity, population management

[1]    IPCC (Intergovernmental Panel on Climate Change) 2014: Summary for policymakers//Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx J C. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge United Kingdom and New York, USA: Cambridge University Press, 2014.
[2]    WMO (World Meteorological Organization). WMO statement on the status of the global climate in 2014. 2015. https://www.wmo.int/ media/sites/default/files/1152_en.pdf.
[3]    《气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2014: 422.
National assessment report of climate changeCompiled Committees. The Third National Assessment Report of Climate Change. Beijing: Science Press, 2014: 422. (in Chinese)
[4]    刘洋, 张健, 杨万勤. 高山生物多样性对气候变化响应的研究进展. 生物多样性, 2009, 17(1): 88-96.
Liu Y, Zhang J, Yang W Q. Responses of alpine biodiversity to climate change. Biodiversity Science, 2009, 17(1): 88-96. (in Chinese)
[5]    Hickling R, Roy D B, Hill J K, Thomas C D. A northward shift of range margins in British Odonata. Global Change Biology, 2005, 11(3): 502-506.
[6]    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421: 37-42.
[7]    赵彩云, 李俊生, 罗建成, 肖能文, 罗遵兰. 蝴蝶对全球气候变化响应的研究综述. 生态学报, 2010, 30(4): 1050-1057.
Zhao C Y, Li J S, Luo J C, Xiao N W, Luo Z L. A review on responses of butterflies to global climate change. Acta Ecologica Sinica, 2010, 30(4): 1050-1057. (in Chinese)
[8]    Warren M S, Hill J K, Thomas J A, Asher J, Fox R, Huntley B, Roy D B, Telfer M G, Jeffcoate S, Harding P, Jeffcoater G, Wilis S G, Greatorex-Davies J N, Moss D, Thomas C D. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 2001, 414: 65-69.
[9]    Hughes L. Biological consequences of global warming: is the signal already apparent. Trends in Ecology and Evolution, 2000, 15(2): 56-61.
[10]   Kwon T S, Kim S S, Chun J H, Byun B K, Lim J H, Shin J H. Changes in butterfly abundance in response to global warming and reforestation. Environmental Entomology, 2010, 39(2): 337-345.
[11]   Juroszek P, von Tiedemann A. Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. The Journal of Agricultural Science, 2013, 151(2): 163-188.
[12]   Kroschel J, Sporleder M, Tonnang H E Z, Juarez H, Carhuapoma P, Gonzales J C, Simon R. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology, 2013, 170: 228-241.
[13] McKenzie S W, Hentley W T, Hails R S, Jones T H, Vanbergen A J, Johnson S N. Global climate change and above-belowground insect herbivore interactions. Frontiers in Plant Science, 2013, 4: Article 412.
[14]   Aluja M, Birke A, Ceymann M, Guillén L, Arrigoni E, Baumgartner  D, Pascacio-Villafán C, Samietz J. Agroecosystem resilience to an invasive insect species that could expand its geographical range in response to global climate change. Agriculture, Ecosystems and Environment, 2014, 186: 54-63.
[15]   Hu C X, Hou M L, Wei G S, Shi B K, Huang J L. Potential overwintering boundary and voltinism changes in the brown planthopper, Nilaparvata lugens, in China in response to global warming. Climatic Change, 2015, 132: 337-352.
[16]   Johnson S N, Ryalls J M W, Karley A J. Global climate change and crop resistance to aphids: contrasting responses of lucerne genotypes to elevated atmospheric carbon dioxide. Annals of Applied Biology, 2014, 165: 62-72.
[17]   Bonebrake T C, Boggs C L, Stamberger J A, Deutsch C A, Ehrlich P R. From global change to a butterfly flapping: biophysics and behavior affect tropical climate change impacts. Proceedings of the Royal Society, 2015, doi: 10.1098/rspb.2014.1264.
[18]   陈瑜, 马春森. 气候变暖对昆虫影响研究进展. 生态学报, 2010, 30(8): 2159-2172.
Chen Y, Ma C S. Effect of global warming on insect: a literature review. Acta Ecologica Sinica, 2010, 30(8): 2159-2172. (in Chinese)
[19]   张花龙, 杨念婉, 李有志, 万方浩. 气候变化对农业害虫及其天敌的影响. 植物保护, 2015, 41(2): 5-15.
Zhang H L, Yang N W, Li Y Z, Wan F H. Impacts of global warming on agricultural pests and its natural enemies. Plant Protection, 2015, 41(2): 5-15. (in Chinese)
[20]   Dingle H, Drake V A. What is migration? BioScience, 2007, 57(2): 113-121.
[21]   Chapman J W, Reynolds D R, Wilson K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecology Letters, 2015, 18(3): 287-302.
[22]   Sparks T H, Yates T J. The effect of spring temperature on the appearance dates of British butterflies 1883-1993. Ecography, 1997, 20: 368-374.
[23]   Leff B, Ramankutty N, Foley J A. Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 2004, 18: GB1009.
[24]   张润志, 梁宏斌, 张广学, 杜秉仁, 刘晏良. 双尾蚜属的种类与地理分布. 昆虫学报, 1999, 42(增刊): 18-25.
Zhang R Z, Liang H B, Zhang G X, Du B R, Liu Y L. Species of Diuraphis aizenberg (Homoptera: Aphididae) and their geograpgic distribution. Acta Entomologica Sinica, 1999, 42(Suppl.): 18-25. (in Chinese)
[25]   刘志娟, 杨晓光, 王文峰, 赵俊芳, 张海林, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅳ: 未来气候变暖对东北三省春玉米种植北界的可能影响. 中国农业科学, 2010, 43(11): 2280-2291.
Liu Z J, Yang X G, Wang W F, Zhao J F, Zhang H L, Chen F. The possible effects of global warming on cropping systems in China IV. The possible impact of future climatic warming on the northern limits of spring maize in three provinces of northeast China. Scientia Agricultura Sinica, 2010, 43(11): 2280-2291. (in Chinese)
[26]   郁振兴, 武予清, 蒋月丽, 封洪强, 刘顺通, 曹雅忠. 利用HYSPLIT模型分析麦蚜远距离迁飞前向轨迹. 生态学报, 2011, 31(3): 889-894.
Yu Z X, Wu Y Q, Jiang Y L, Feng H Q, Liu X T, Cao Y Z. Forward trajectory analysis of wheat aphids during long-distance migration using HYSPLIT model. Acta Ecologica Sinica, 2011, 31(3): 889-894. (in Chinese)
[27]   Zhang B, Edwards O R, Kang L, Fuller S J. Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Molecular Ecology, 2012, 21: 2130-2144.
[28]   Berzonsky W A, Ding H, Haley S D, Harris M O, Lamb R J, McKenzie R H. Breeding wheat for resistance to insects. Plant Breeding Reviews, 2003, 22: 221-296.
[29]   Oakley J N. Control needs for changing pest distribution//Arable Cropping in a Changing Climate Proceedings of the HGCA Conference. Home Grown Cereals Authority (HGCA), United Kingdom, 2008: 87-92.
[30]   苗进, 武予清, 郁振兴, 陈华爽, 刘顺通, 蒋月丽, 段云. 麦红吸浆虫随气流远距离扩散的轨迹分析. 昆虫学报, 2011, 54(4): 432-436.
Miao J, Wu Y Q, Yu Z X, Chen H X, Liu S T, Jiang Y L, Duan      Y. Trajectory analysis of long-distance dispersal of the wheat   midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), with air current. Acta Entomologica Sinica, 2011, 54(4): 432-436. (in Chinese)
[31]   Sharma H C, Davies J C. The oriental armyworm, Mythimna separate (Wlk.), distribution, biology and control: A literature review// Miscellaneous Report, Centre for Overseas Pest Research, 1983: 24.
[32]   Chen R L, Bao X Z, Drake V A, Farrow R A, Wang S Y, Sun Y J, Zhai B P. Radar observations of the spring migration into northeastern China of the oriental armyworm moth, Mythimna separate, and other insects. Ecological Entomology, 1989, 14: 149-162.
[33]   Feng H Q, Zhao X C, Wu X F, Wu B, Wu K M, Cheng D F, Guo Y Y. Autumn migration of Mythimna separata (Lepidoptera: Noctuidae) over the Bohai Sea in Northern China. Environmental Entomology, 2008, 37(3): 774-781.
[34]   Jiang X F, Luo L Z, Zhang L, Sappintton T W, Hu Y. Regulation of migration in Mythimna separate (Walker) in China: A review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environmental Entomology, 2011, 40(3): 516-533.
[35]   Otuka A. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Frontiers in Microbiology, 2013, 4: Article 309.
[36]   Mei L, Guan Z G, Zhou H J, Lv J, Zhu Z R, Cheng J A, Chen F J, Lofstedt C, Svanberg S, Somesfalean G. Agricultural pest monitoring using fluorescence lidar techniques. Applied Physics B-Lasers and Optics, 2012, 106(3): 733-740.
[37]   蒋春先, 杨秀丽, 齐会会, 张云慧, 程登发. 中国华南地区稻纵卷叶螟迁飞的一次雷达观测. 中国农业科学, 2012, 45(23): 4808-4817.
Jiang C X, Yang X L, Qi H H, Zhang Y H, Cheng D F. A case study of radar observation of the rice leaf folder (Cnaphalocrocis medinalis Guenée) migration in southern China. Scientia Agricultura Sinica, 2012, 45(23): 4808-4817. (in Chinese)
[38]   Fu X W, Li C, Feng H Q, Liu Z F, Chapman J W, Reynolds D R, Wu K M. Seasonal migration of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) over the Bohai sea in northern China. Bulletin of Entomological Research, 2014, 104: 601-609.
[39]   Shirai Y. Laboratory evaluation of flight ability of the Oriental corn borer, Ostrinia fumacalis (Lepidoptera: Pyralidae). Bulletin of Entomological Research, 1999, 88(3): 327-333.
[40]   Mazurek J, Hurej M, Jackowski J. Some aspects of the biology of the European corn borer (Ostrinia nubilalis Hbn.) on sweet corn. Journal of Plant Protection Research, 2003, 43(4): 345-352.
[41]   Sappington T W, Showers W B. Implications for migration of age-related variation in flight behavior of Agrotis ipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1991, 84(5): 560-565.
[42]   Feng H Q, Wu K M, Cheng D F, Guo Y Y. Spring migration and summer dispersal of Loxostege sticticalis (Lepidoptera: Pyralidae) and other insects observed with radar in Northern China. Environmental Entomology, 2004, 33(5): 1253-1265.
[43] Liu Y Q, Fu X W, Feng H Q, Liu Z F, Wu K M. Trans-regional migration of Agrotis ipsilon (Lepidoptera: Noctuidae) in north-east Asia. Annals of the Entomological Society of America, 2015, 108: 519-527.
[44]   Zimmer M M, Frank J, Barker J H, Becker H. Effect of extracts from the Chinese and European mole cricket on wound epithelialization and neovascularization: in vivo studies in the hairless mouse ear wound model. Wound Repair and Regeneration, 2006, 14(2): 142-151.
[45]   Tilmon K J, Hodgson E W, O’Neal M E, Ragsdale D W. Biology of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) in the United States. Journal of Integrated Pest Management, 2011, 2(2): 1-7.
[46]   Ragsdale D W, Landis D A, Brodeur J, Heimpel G E, Desneux N. Ecology and management of the soybean aphid in North America. Annual Review of Entomology, 2011, 56: 375-399.
[47]   Shi X Y, Feng H Q, Liu Z F, Li J D. Comparative studies on orientation hebaviors of Mythimna separate, Helicoverpa armigera, and Agrotis ypsilon in the laboratory. Plant Protection, 2010, 36: 60-63.
[48]   Feng H Q, Wu X F, Wu B, Wu K M. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. Journal of Economic Entomology, 2009, 102(1): 95-104.
[49]   Feng H Q, Gould F, Huang Y X, Jiang Y Y, Wu K M. Modeling the population dynamics of cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) over a wide area in northern China. Ecological Modelling, 2010, 221: 1819-1830.
[50]   Mironidis G K, Stamopoulos D C, Savopoulou-Soultani M. Overwintering survival and spring emergence of Helicoverpa armigera (Lepidoptera: Noctuidae) in northern Greece. Environmental Entomology, 2010, 39(4): 1068-1084.
[51]   Lu Y H, Wu K M, Guo Y Y. Flight potential of Lygus lucorum (Meyer-Dür) (Heteroptera: Miridae). Environmental Entomology, 2007, 36(5): 1007-1013.
[52]   Samocha Y, Stemberg M. Herbivory by sucking mired bugs can reduce nectar production in Asphodelus aestivus Brot. Arthropod- Plant Interactions, 2010, 4: 153-158.
[53]   Lu Y H, Wu K M. Mirid bugs in China: pest status and management strategies. Outlooks on Pest Management, 2011, 22: 248-252.
[54]   Roy D B, Sparks T H. Phenology of British butterflies and climate change. Global Change Biology, 2000, 6: 407-416.
[55]   Kuchlein J H, Ellis W N. Climate-induced changes in the microlepidoptera fauna of the Netherlands and the implications for nature conservation. Journal of Insect Conservation, 1997, 1: 73-80.
[56]   Stefanescu C, Peñuelas J, Filella I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology, 2003, 9: 1494-1506.
[57]   Forister M L, Shapiro A M. Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology, 2003, 9: 1130-1135.
[58]   Zhou X, Harrington R, Woiwod I P, Perry J N, Jeffrey J N, Bale J S, Clark S. Effects of temperature on aphid phenology. Global Change Biology, 1995, 1(4): 303-313.
[59] Gordo O, Sanz J J. Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952-2004). Ecological Entomology, 2006, 31(3): 261-268.
[60]   Hassall C, Thompson D J, French G C, Harvey I F. Historical changes in the phenology of British Odonata are related to climate. Global Change Biology, 2007, 13(5): 933-941.
[61]   Dingemanse N J, Kalkman V J. Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecological Entomology, 2008, 33(3): 394-402.
[62]   张国庆. 森林健康与林业有害生物管理. 四川林业科技, 2008, 29(6): 77-80.
Zhang G Q. Forest health and forestry pest management. Journal of Sichuan Forestry Science and Technology, 2008, 29(6): 77-80. (in Chinese)
[63]   张翠英, 刘继敏, 成兆金, 景安华. 气候变化对鲁西南棉铃虫的影响. 中国棉花, 2008, 35(9): 9-20.
Zhang C Y, Liu J M, Cheng Z J, Jing A H. The impact of climate change on cotton bollworm, Helicoverpa armigera. China Cotton, 2008, 35(9): 9-20. (in Chinese)
[64]   刘明春, 蒋菊芳, 魏育国, 徐生海. 气候变暖对甘肃省武威市主要病虫害发生趋势的影响. 安徽农业科学, 2009, 37(20): 9522-9525, 9531.
Liu M C, Jiang J F, Wei Y G, Xu S H. Influences of climate warming on main diseases and insect pests’ occurrence trend in Wuwei city, Gansu province. Journal of Anhui Agricultural Science, 2009, 37(20): 9522-9525, 9531. (in Chinese)
[65]   Yamanaka T, Tatsuki S, Shimada M. Adaptation to the new land or effect of global warming? An age-structured model for rapid voltinism change in an alien lepidopteran pest. Journal of Animal Ecology, 2008, 77: 585-596.
[66]   Gomi T, Adachi K, Shimizu A, Tanimoto K, Kawabata E, Takeda M. Northerly shift in voltinism watershed in Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) along the Japan Sea coast: Evidence of global warming? Applied Entomology and Zoology, 2009, 44(3): 357-362.
[67]   Deutsch C A, Tewksbury J J, Huey R B,SheldonK S, GhalamborC K, HaakD C, MartinP R. Impacts of climate warming on terrestrial ecototherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18): 6668-6672.
[68]   Gomi T, Nagasaka M, Fukuda T, Hagihara H. Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomologia Experimentalis et Applicata, 2007, 125(2): 179-184.
[69]   李淑华. 气候变暖对病虫害的影响及防治对策. 中国农业气象, 1993, 14(1): 41-44.
Li S H. Impacts of global warming on plant diseases and insect   pests. Chinese Journal of Agrometeorology, 1993, 14(1): 41-44. (in Chinese)
[70]   Yamamura K, Yokozawa M. Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallen) (Hemiptera: Delphacidae), under global warming. Applied Entomology and Zoology, 2002, 37(1): 181-190.
[71]   Ghini R, Hamada E, Pedro Junior M J, Marengo J A, Goncalves R R. Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesquisa Agropecuaria Brasileira, 2008, 43(2): 187-194.
[72]   Tobin P C, Nagarkatti S, Loeb G, Saunders M C. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 2008, 14(5): 951-957.
[73]   Yamamura K, Yokozawa M, Nishimori M, Ueda Y, Yokosuka T. How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Population Ecology, 2006, 48(1): 31-48.
[74]   Ma C S, Hau B, Poehling H M. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentalis et Applicata, 2004, 110(1): 65-71.
[75]   Holopainen J K, Kainulainen P. Reproductive capacity of the grey pine aphid and allocation response of Scots pine seedlings across temperature gradients: a test of hypotheses predicting outcomes of global warming. Canadian Journal of Forest Research, 2004, 34(1): 94-102.
[76]   Whitney-Johnson A, Thompson M, Hon E. Responses to predicted global warming in Pieris rapae L. (Lepidoptera): consequences of nocturnal versus diurnal temperature change on fitness components. Environmental Entomology, 2005, 34(3): 535-540.
[77]   Stireman J O, Dyer L A, Janzen D H, Singer M S, Lill J T, Marquis R J, Ricklefs R E, Gentry G L, Hallwachs W, Coley P D, Barone J A, Greeney H F, Connahs H, Barbosa P, Morais H C, Diniz I R. Climatic unpredictability and parasitism of caterpillars: Implications of global warming. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(48): 17384-17387.
[78]   Guo H, Chien C C, Chen Q, He Y, Levin K. Finite-temperature behavior of an interspecies fermionic superfluid with population imbalance. Physical Review A, 2009, 80(1): 011601.
[79]   Gray D R. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Climatic Change, 2008, 87(3): 361-383.
[80]   戈峰, 陈法军, 吴刚, 孙玉诚. 昆虫对大气CO2浓度升高的响应. 北京: 科学出版社, 2010: 1-22.
Ge F, Chen F J, Wu G, Sun Y C. Response of Insect to the Elevation of CO2 Concentration. Beijing: Science Press, 2010: 1-22. (in Chinese)
[81]   Chen F J, Ge F, Parajulee M N. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environmental Entomology, 2005, 34(1): 37-46.
[82]   Chen F J, Wu G, Parajulee M N, Ge F. Long-term impacts of elevated carbon dioxide and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomologia Experimentalis et Applicata, 2007, 124(1): 27-35.
[83]   Sun Y C, Chen F J, Ge F. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environmental Entomology, 2009, 38(1): 26-34.
[84]   Sun Y C, Su J W, Ge F. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agriculture, Ecosystems and Environment, 2010, 135: 140-147.
[85]   Ward N L, Masters G J. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology, 2007, 13(8): 1605-1615.
[86]   Crozier L. Field transplants reveal summer constraints on a butterfly range expansion. Oecologia, 2004, 141: 148-157.
[87]   Jordano D, Retamosa E C, Haeger J E. Factors facilitating the continued presence of Colotis evagore (Klug, 1829) in southern Spain. Journal of Biogeography, 1991, 18: 637-646.
[88]   Musolin D L. Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology, 2007, 13(8): 1565-1585.
[89]   Stephens A E A, Kriticos D J, Leriche A. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research, 2007, 97(4): 369-378.
[90]   Umina P A, Weeks A R, Kearney M R, McKechnie S W, Hoffmann A A. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science, 2005, 308(5772): 691-693.
[91]   Battisti A, Stastny M, Buffo E, Larsson S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 2006, 12(4): 662-671.
[92]   Edward D A, Blyth J E, McKee R, Gilburn A S. Change in the distribution of a member of the strand line community: the seaweed fly (Diptera: Coelopidae). Ecological Entomology, 2007, 32(6): 741-746.
[93]   中国国家气候中心. 21世纪中国温度变化预估结果. 2004, http://ncc.cma.gov.cn/Website/index.php?ChannelID=34&NewsID= 177.
National Climate Center. Estimation of Temperature Change in 21th Century. 2004, http://ncc.cma.gov.cn/Website/index.php?ChannelID= 34&NewsID=177. (in Chinese)
[94]   李淑华. 气候变暖对我国农作物病虫害发生、流行的可能影响及发生趋势. 中国农业气象, 1992, 13(2): 46-49.
Li S H. Developing trends and impacts of global warming on plant diseases and insect pests. Chinese Journal of Agrometeorology, 1992, 13(2): 46-49. (in Chinese)
[95]   张孝羲, 耿济国, 周威. 我国稻纵卷叶螟Cnaphalocrocis medinalis Guenée迁飞规律的研究. 南京农学院学报, 1981(3): 44-54.
Zhang X X, Geng J G, Zhou W J. Study on the migration rule of Cnaphalocrocis medinalis Guenée in China. Journal of Nanjing Agricultural College, 1981(3): 44-54. (in Chinese)
[96]   赵圣菊. 从气象因素分析1987年稻飞虱大发生的原因. 植物保护, 1988, 14(2): 2-5.
Zhao S J. Meteorological analysis to the results of Delphacidae outbreak in 1987. Plant Protection, 1988, 14(2): 2-5. (in Chinese)
[97]   赵铁良, 耿海东, 张旭东, 方国飞, 王玉玲, 赵清山. 气温变化对我国森林病虫害的影响. 中国森林病虫, 2003, 22(3): 29-32.
Zhao T L, Geng H D, Zhang X D, Fang G F, Wang Y L, Zhao Q S. Influence of temperature change on forest pests in China. Forest Pest and Disease, 2003, 22(3): 29-32. (in Chinese)
[98]   鞠珍, 李明贵, 刁志娥, 许永玉. 美国白蛾越冬蛹的过冷却能力、体内水分及脂肪含量. 应用生态学报, 2009, 20(11): 2763-2767.
Ju Z, Li M G, Diao Z E, Xu Y Y. Super-cooling ability and its relations to body’s water and fat contents of overwintering Hyphantrian cunea (Lepidoptera: Arcidae) pupae. Chinese Journal of Applied Ecology, 2009, 20(11): 2763-2767. (in Chinese)
[99]   McCarty J P. Ecological consequences of recent climate change. Conservation Biology, 2001, 15(2): 320-331.
[100] Wilson R J, David G, Gutiérrez J, Martínez D, Agudo R, Monserrat  V J. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 2005, 8: 1138-1146.
[101] Battisti A, Stastny M, Buffo E, Larsson S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 2006, 12(4): 662-671.
[102] Paradis A, Elkinton J, Hayhoe K, Buonaccorsi J. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change, 2008, 13(5/6): 541-554.
[103] Hagen S B, Jepsen J U, Ims R A, Yoccoz N G. Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? Ecography, 2007, 30(2): 299-307.
[104] Merrill R M, Gutierrez D, Lewis O T, Gutiérrez J, Díez S B, Wilson R J. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. Journal of Animal Ecology, 2008, 77(1): 145-155.
[105] Six D L, Bentz B J. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microbial Ecology, 2007, 54(1): 112-118.
[106] Logan J A, Regniere J, Gray D R, Munson A S. Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah. Ecological Applications, 2007, 17(1): 101-117.
[107] Volney W J A, Fleming R A. Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics. Global Change Biology, 2007, 13(8): 1630-1643.
[108] Srygley R B, Chai P. Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 1990, 84: 491-499.
[109] Hill J K, Thomas C D, Huntley B. Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proceedings of the Royal Society of London, 1999, 266(1425): 1197-1206.
[110] Dempster J P, King M L, Lakhani K H. The status of the swallowtail butterfly in Britain. Ecological Entomology, 1976, 1(2): 71-84.
[111] Dempster J P. Fragmentation, isolation and mobility of insect populations//Collins N M, Thomas J A. The Conservation of Insects and Their Habitats. London: Academic Press, 1991: 143-153.
[112] Dudley R. Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 1990, 150: 37-53.
[1] YAN RuiRui,ZHANG Yu,XIN XiaoPing,WEI ZhiJun,Wuren qiqige,GUO MeiLan. Effects of Mowing Disturbance on Grassland Plant Functional Groups and Diversity in Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583.
[2] REN ZhenTao, SHEN WenJing, LIU Biao, XUE Kun. Effects of Transgenic Maize on Biodiversity of Arthropod Communities in the Fields [J]. Scientia Agricultura Sinica, 2017, 50(12): 2315-2325.
[3] CHEN Wan-Quan-1, KANG Zhen-Sheng-2, MA Zhan-Hong-3, XU Shi-Chang-1, JIN She-Lin-4, JIANG Yu-Ying-5. Integrated Management of Wheat Stripe Rust Caused by Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262.
[4] SHI Lin-Lin, SHEN Ming-Xing, JIANG Min, LU Chang-Ying, WANG Hai-Hou, WU Tong-Dong, ZHOU Xin-Wei, SHEN Xin-Ping. Effect of Long-Term Different Fertilization Management on Weed Community in Rice-Wheat Rotation Field [J]. Scientia Agricultura Sinica, 2013, 46(2): 310-316.
[5] FENG Min, WANG Chun-Xiao, LIU Yan-Lin. Genetic Diversity of Saccharomyces cerevisiae Strains Revealed by Microsatellite Sequence Polymorphism [J]. Scientia Agricultura Sinica, 2012, 45(12): 2537-2543.
[6] ZHOU Hai-bo,CHEN Lin,CHEN Ju-lian,CHENG Deng-fa,LIU Yong,SUN Jing-rui
. Effect of Intercropping Between Wheat and Pea on Spatial Distribution of Sitobion avenae Based on GIS
[J]. Scientia Agricultura Sinica, 2009, 42(11): 3904-3913 .
[7] CHEN Wan-quan, XU Shi-chang, WU Li-ren. Epidemiology and Sustainable Management of Wheat Stripe Rust Caused by Puccinia striiformis West. in China: A Historical Retrospect and Prospect [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3107-3113.
[8] . Impact of Grain for Green Project to nature and society in north Shaanxi of China [J]. Scientia Agricultura Sinica, 2007, 40(5): 972-979 .
[9] . The Influence of Rice-duck Intergrowth on Aquatic Community in Rice Fields [J]. Scientia Agricultura Sinica, 2006, 39(10): 2001-2008 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!