Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3486-3496.doi: 10.3864/j.issn.0578-1752.2018.18.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

High Spectral Inversion of Winter Wheat LAI Based on New Vegetation Index

MeiYan SHU1,2,3,4(), XiaoHe GU2,3,4(), Lin SUN1, JinShan ZHU1, GuiJun YANG2,3,4, YanCang WANG5, LiYan ZHANG2,3,4   

  1. 1College of Geomatics Shandong University of Science and Technology, Qingdao 266590, Shandong
    2Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture/Beijing Research Center for Information Technology in Agriculture, Beijing 100097
    3National Engineering Research Center for Information Technology in Agriculture, Beijing 100097
    4Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097
    5North China Institute of Aerospace Engineering, Langfang 065000, Hebei
  • Received:2018-04-18 Accepted:2018-06-13 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objection】The purpose of this study was to analyze the effect of leaf water content on crop canopy spectra and to construct a new spectral index, so as to improve the accuracy of high spectral inversion of crop leaf area index (LAI). 【Method】 Under the support of winter wheat water-fertilizer cross test, the canopy spectral response characteristics of LAI of winter wheat under different recalcitrant cultivars, nitrogen application rates and irrigation amount were analyzed. Through the correlation analysis among the normalized differential red edge index (NDRE), water sensitivity index (WI) and LAI, the paper developed, a new vegetation index, the red-edge resistance water vegetation index (RRWVI) to inverse winter wheat LAI. Several commonly used vegetation indices were used as a reference to analyze the response ability of RRWVI to diagnose the LAI of many key winter wheat varieties. 2/3 of the measured samples were randomly selected to establish a high spectral response model of LAI based on various vegetation indices and 1/3 of the samples not involved in the modeling were used to evaluate the accuracy of the model. 【Result】 The results showed that with the advancement of growth period, the LAI of winter wheat first increased and then decreased, and different water and fertilizer treatments had a greater effect on it. After the flowering stage, the LAI of winter wheat declined significantly, and the LAI of strong gluten wheat (Gaoyou2018) was higher than that of medium-gluten wheat (Jimmy22) during the whole growth period. The spectral reflectance of winter wheat under different nitrogen levels increased with the increase of nitrogen application rate in the near-infrared band (720-1 350 nm), which was completely consistent with the nitrogen fertilizer gradient. The samples with twice-nitrogen treatment had the highest near-infrared reflectance, and the changed in spectral reflectance of winter wheat canopy under different growth stages were generally consistent. There was a high correlation between NDRE and WI in each key growth period, and the correlation between NDRE and LAI was significantly better than that of WI. The correlation between RRWVI and LAI was better than NDRE and WI. Although 8 commonly used vegetation indices are significantly correlated with LAI, RRWVI has the greatest correlation with LAI, and the coefficient of determination R2 of the fitting curve reached 0.86.【Conclusion】 By analyzing the hyperspectral inversion model of winter wheat LAI constructed by all kinds of indices, the newly constructed RRWVI achieved a more reliable inversion effect than frequently-used vegetation indices, such as NDRE and NDVI, indicating that the newly constructed red edge water-resistant vegetation index could effectively improve the accuracy of monitoring winter wheat LAI.

Key words: winter white, hyperspectral, RRWVI, leaf area index, NDRE, NDVI

Fig. 1

The geographical location of the study area"

Fig. 2

The map of water and fertilizer"

Fig. 3

Pictures of key growth period of winter wheat"

Table 1

Common vegetation index calculation formula"

植被指数
Vegetable index
名称
Name
公式
Formula
参考文献
References
RRWVI 红边抗水植被指数
Red-edge resistance water vegetable index
$\frac{{{\text{R}}_{\text{970}}}\text{(}{{\text{R}}_{\text{790}}}\text{-}{{\text{R}}_{\text{720}}}\text{)}}{{{\text{R}}_{\text{900}}}\text{(}{{\text{R}}_{\text{790}}}\text{+}{{\text{R}}_{\text{720}}}\text{)}}$
NDVI 归一化植被指数
Normalized difference vegetation index
$\frac{{{\text{R}}_{\text{800}}}\text{-}{{\text{R}}_{\text{670}}}}{{{\text{R}}_{\text{800}}}\text{+}{{\text{R}}_{\text{670}}}}$ [26]
RVI 比值植被指数
Ratio vegetation index
$\frac{{{\text{R}}_{\text{800}}}}{{{\text{R}}_{\text{670}}}}$ [27]
DVI 差值植被指数
Difference vegetation index
${{\text{R}}_{\text{800}}}\text{-}{{\text{R}}_{670}}$ [28]
SAVI 土壤调节植被指数
Soil-adjusted vegetation index
$\frac{\text{1}\text{.5(}{{\text{R}}_{\text{800}}}\text{-}{{\text{R}}_{\text{670}}}\text{)}}{{{\text{R}}_{\text{800}}}\text{+}{{\text{R}}_{\text{670}}}\text{+0}\text{.5}}$ [29]
NDRE 标准化差分红边植被指数
Normalized difference red edge
$\frac{{{\text{R}}_{\text{790}}}\text{-}{{\text{R}}_{\text{720}}}}{{{\text{R}}_{\text{790}}}\text{+}{{\text{R}}_{\text{720}}}}$ [24]
NVI 新植被指数
New vegetable index
$\frac{{{\text{R}}_{\text{777}}}\text{-}{{\text{R}}_{\text{747}}}}{{{\text{R}}_{\text{673}}}}$ [30]
NPCI 归一化色素叶绿素植被指数
Normalized pigment chlorophyll vegetation index
$\frac{{{\text{R}}_{\text{800}}}\text{-}{{\text{R}}_{\text{680}}}}{{{\text{R}}_{\text{800}}}\text{+}{{\text{R}}_{\text{680}}}}$ [31]
WI 水分指数
Water index
$\frac{{{\text{R}}_{\text{900}}}}{{{\text{R}}_{\text{970}}}}$ [25]
PRI 光辐射指数
Photon radiance index
$\frac{{{\text{R}}_{\text{570}}}\text{-}{{\text{R}}_{\text{531}}}}{{{\text{R}}_{\text{570}}}\text{+}{{\text{R}}_{\text{531}}}}$ [32]

Fig. 4

Analysis of changes in LAI at key growth stages of winter wheat The uppercase letters indicate that the LAI is significantly different at P<0.01, and the lowercase letters indicate that the LAI is significantly different at P<0.05"

Fig. 5

Canopy spectral changes of winter wheat with different nitrogen levels(A) and canopy spectral changes of winter wheat in key growth stages"

Fig. 6

The correlation of NDRE and WI in key growth stages"

Table 2

Comparison and analysis of LAI inversion models based on vegetation index"

参数 Parameter 模型 Model R2 RMSE
NDVI y = 0.1053e4.3133x 0.78 1.216
RVI y = 1.3344e0.0601x 0.59 1.754
DVI y = 0.296e7.4489x 0.67 1.429
SAVI y = 0.1901e5.3888x 0.71 1.31
PRI y = 5.0448e-21.59x 0.66 1.433
NVI y = 1.7431e0.2685x 0.49 1.905
NPCI y = 6.235e4.2439x 0.56 1.464
NDRE y = 0.3073e5.6259x 0.73 1.365
RRWVI y = 0.1614e8.0405x 0.83 1.038

Fig. 7

Accuracy verification of LAI inversion model based on test samples"

[1] LEE K S.Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004, 91(3): 508-520.
doi: 10.1016/j.rse.2004.04.010
[2] LI Z W, XIN X P, TANG H, YANG F, CHEN B R, ZHANG B H.Estimating grassland LAI using the random forests approach and landsat imagery in the meadow steppe of Hulunber, China. Journal of Integrative Agriculture, 2017, 16(2): 286-297.
doi: 10.1016/S2095-3119(15)61303-X
[3] FAN W J, XU X R, LIU X C, YAN B Y, CUI Y K.Accurate LAI retrieval method based on PROBA/CHRIS data. Hydrology & Earth System Sciences Discussions, 2010, 6(6): 7001-7024.
doi: 10.5194/hess-14-1499-2010
[4] 李卫国, 赵春江, 王纪华, 刘良云, 宋晓宇. 基于卫星遥感的冬小麦拔节期长势监测. 麦类作物学报, 2007, 27(3): 523-527.
doi: 10.3969/j.issn.1009-1041.2007.03.034
LI W G, ZHAO C J, WANG J H, LIU L Y, SONG X Y.Monitoring the growth condition of winter wheat in jointing stage based on Land Sat TM Image. Journal of Triticeae Crops, 2007, 27(3): 523-527. (in Chinese)
doi: 10.3969/j.issn.1009-1041.2007.03.034
[5] LI G, LI X, LI G, WEN W, WANG H, CHEN L, YU J, DENG F.Comparison of spectral characteristics between China HJ1-CCD and Landsat 5 TM imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 139-148.
doi: 10.1109/JSTARS.2012.2206800
[6] KRISHNAN P, SHARMA R K, DASS A, KUKREJA A, SRIVASTAV R, SINGHAL R J, BANDYOPADHYAY K K, LAL K, MANJAIAH K M, CHHOKARB R S, GILL S C.Web-based crop model: Web InfoCrop-Wheat to simulate the growth and yield of wheat. Computers and Electronics in Agriculture, 2016, 127: 324-335.
doi: 10.1016/j.compag.2016.06.008
[7] SOUDANI K, FRANÇOIS C, MAIRE G L, DANTEC V L, DUFRÊNE E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 2006, 102(1): 161-175.
doi: 10.1016/j.rse.2006.02.004
[8] 贾学勤, 冯美臣, 杨武德, 王超, 肖璐洁, 孙慧, 武改红, 张松. 基于多植被指数组合的冬小麦地上干生物量高光谱估测. 生态学杂志, 2018, 37(2): 424-429.
JIA X Q, FENG M C, YANG W D, WANG C, XIAO L J, SUN H, WU G H, ZHANG S.Hyperspectral estimation of aboveground dry biomass of winter wheat based on the combination of vegetation indices. Chinese Journal of Ecology, 2018, 37(2): 424-429. (in Chinese)
[9] 田明璐. 西北地区冬小麦生长状况高光谱遥感监测研究[D]. 杨凌: 西北农林科技大学, 2017.
TIAN M L.Monitoring winter wheat growth conditions in the northeast region of China by using hyperspectral remote sensing[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[10] 刘洋, 刘荣高, 陈镜明, 程晓, 郑光. 叶面积指数遥感反演研究进展与展望. 地球信息科学学报, 2013, 15(5): 734-743.
doi: 10.3724/SP.J.1047.2013.00734
LIU Y, LIU R G, CHEN J M, CHENG X, ZHENG G.Current status and perspectives of leaf area index retrieval from optical remote sensing data. Geo-Information Science, 2013, 15(5): 734-743. (in Chinese)
doi: 10.3724/SP.J.1047.2013.00734
[11] GONG P, PU R, BIGING G S, LARRIEU M R.Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362.
doi: 10.1109/TGRS.2003.812910
[12] KAUWE M G D, DISNEY M I, QUAIFE T, LEWIS P, WILLIAMS M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 2011, 115(2): 767-780.
doi: 10.1016/j.rse.2010.11.004
[13] 贺佳, 刘冰锋, 李军. 不同生育时期冬小麦叶面积指数高光谱遥感监测模型. 农业工程学报, 2014, 30(24): 141-150.
doi: 10.3969/j.issn.1002-6819.2014.24.017
HE J, LIU B F, LI J.Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 141-150. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.24.017
[14] 刘轲, 周清波, 吴文斌, 陈仲新, 唐华俊. 基于多光谱与高光谱遥感数据的冬小麦叶面积指数反演比较. 农业工程学报, 2016, 32(3): 155-162.
doi: 10.11975/j.issn.1002-6819.2016.03.022
LIU K, ZHOU Q B, WU W B, CHEN Z X, TANG H J.Comparison between multispectral and hyperspectral remote sensing for LAI estimation. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 155-162. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2016.03.022
[15] 李子扬, 钱永刚, 申庆丰, 王宁, 刘耀开, 马灵玲, 孔祥生. 基于高光谱数据的叶面积指数遥感反演. 红外与激光工程, 2014, 43(3): 944-949.
doi: 10.3969/j.issn.1007-2276.2014.03.049
LI Z Y, QIAN Y G, SHEN Q F,WANG N, LIU Y K, MA L L, KONG X S.Leaf area index retrieval from remotely sensed hyperspectral data. Infrared and Laser Engineering, 2014, 43(3): 944-949. (in Chinese)
doi: 10.3969/j.issn.1007-2276.2014.03.049
[16] FENG W, ZHANG H Y, ZHANG Y S, QI S L, HENG Y R, GUO B B, MA D Y, GUO T C.Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research, 2016, 198: 238-246.
doi: 10.1016/j.fcr.2016.08.023
[17] GITELSON A A.Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 2004, 161(2): 165-173.
doi: 10.1078/0176-1617-01176 pmid: 15022830
[18] THENKABAIL P S, SMITH R B, PAUW E D.Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 2000, 71(2): 158-182.
doi: 10.1016/S0034-4257(99)00067-X
[19] HUETE, A R, JACKSON R D, POST D F.Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 1985, 17(1): 37-53.
doi: 10.1016/0034-4257(85)90111-7
[20] KAUFMAN Y J, TANRE D.Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 261-270.
doi: 10.1109/36.134076
[21] HABOUDANE D, MILLER J R, TREMBLAY N, ZARCO-TEJADA P J, DEXTRAZE L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 2002, 81(2): 416-426.
doi: 10.1016/S0034-4257(02)00018-4
[22] 胡昊, 白由路, 杨俐苹, 卢艳丽, 王磊, 王贺, 孔庆波. 不同氮营养冬小麦冠层光谱红边特征分析. 植物营养与肥料学报, 2009, 15(6): 1317-1323.
doi: 10.11674/zwyf.2009.0611
HU H, BAI Y L, YANG L P, LU Y L, WANG L, WANG H, KONG Q B.Red edge parameters of winter wheat canopy under different nitrogen levels. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317-1323. (in Chinese)
doi: 10.11674/zwyf.2009.0611
[23] 卢艳丽, 李少昆, 白由路, 谢瑞芝, 宫永梅. 冬小麦冠层光谱红边参数的变化及其与氮素含量的相关分析. 遥感技术与应用, 2007, 22(1): 1-7.
doi: 10.3969/j.issn.1004-0323.2007.01.001
LU Y L, LI S K, BAI Y L, XIE R Z, GONG Y M.Spectral red edge parametric variation and correlation analysis with N content in winter wheat. Remote Sensing Technology and Application, 2007, 22(1): 1-7. (in Chinese)
doi: 10.3969/j.issn.1004-0323.2007.01.001
[24] FITZGERALD G J, RODRIGUEZ D, CHRISTENSEN L K, BELFORD R, SADRAS V O, CLARKE T R.Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 2006, 7(4): 233-248.
doi: 10.1007/s11119-006-9011-z
[25] PENUELAS J, PINOL J, OGAYA R, FILELLA I.Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing,1997, 18(13): 2869-2875.
doi: 10.1080/014311697217396
[26] ADAMS M L, PHILPOT W D, NORVELL W A.Yellowness index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing, 1999, 20(18): 3663-3675.
doi: 10.1080/014311699211264
[27] SERRANO L, PENUELAS J, USTIN S L.Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 2002, 81(2): 355-364.
doi: 10.1016/S0034-4257(02)00011-1
[28] GITELSON A A, KAUFMAN Y J, STARK R, RUNDQUIST D.Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80(1): 76-87.
doi: 10.1016/S0034-4257(01)00289-9
[29] HUETE A R.A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309.
doi: 10.1016/0034-4257(88)90106-X
[30] SIM D A, GAMON J A.Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2): 337-354.
doi: 10.1016/S0034-4257(02)00010-X
[31] PENUELAS J, GAMON J A, FREDEEN A L, MERINO J, FIELD C B.Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment, 1994, 48(2): 135-146.
doi: 10.1016/0034-4257(94)90136-8
[32] GAMON J A, PENUELAS J, FIELD C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44.
doi: 10.1016/0034-4257(92)90059-S
[33] HATFIELD J L, KANEMASU E T, ASRAR G, JACKSON R D, PINTERJR P J, REGINATO R J, IDSO S B.Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 1985, 6(1): 167-175.
doi: 10.1080/01431168508948432
[34] GITELSON A A, KAUFMAN Y, MERZLYAK M N.Use of green channel in remote of sensing global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298.
doi: 10.1016/S0034-4257(96)00072-7
[35] RONDEAUX G, STEVEN M, BARET F.Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment, 1996, 85(17): 8369-8375.
doi: 10.1016/0034-4257(95)00186-7
[36] HABOUDANE D, MILLER J R, PATTEY E, ZARCO-TEJADA P J, STRACHAN I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.
doi: 10.1016/j.rse.2003.12.013
[1] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[4] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[5] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
[6] LI PengLei,ZHANG Xiao,WANG WenHui,ZHENG HengBiao,YAO Xia,ZHU Yan,CAO WeiXing,CHENG Tao. Assessment of Terrestrial Laser Scanning and Hyperspectral Remote Sensing for the Estimation of Rice Grain Yield [J]. Scientia Agricultura Sinica, 2021, 54(14): 2965-2976.
[7] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[8] ZHOU Ke,LIU Le,ZHANG YanNa,MIAO Ru,YANG Yang. Area Extraction and Growth Monitoring of Winter Wheat in Henan Province Supported by Google Earth Engine [J]. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318.
[9] FengZhi SHI,RuiYan WANG,YuHuan LI,Hong YAN,XiaoXin ZHANG. LAI Estimation Based on Multi-Spectral Remote Sensing of UAV and Its Application in Saline Soil Improvement [J]. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805.
[10] ZHOU LongFei, GU XiaoHe, CHENG Shu, YANG GuiJun, SUN Qian, SHU MeiYan. Spectral Diagnosis of Leaf Area Density of Maize at Heading Stage Under Lodging Stress [J]. Scientia Agricultura Sinica, 2019, 52(9): 1518-1528.
[11] ZHANG Zhuo,LONG HuiLing,WANG ChongChang,YANG GuiJun. Comparison of Hyperspectral Remote Sensing Estimation Models Based on Photosynthetic Characteristics of Winter Wheat Leaves [J]. Scientia Agricultura Sinica, 2019, 52(4): 616-628.
[12] YanChuan MA,Hao LIU,ZhiFang CHEN,Kai ZHANG,Xuan YU,JingLei WANG,JingSheng SUN. Canopy Equivalent Water Thickness Estimation of Cotton Based on Hyperspectral Index [J]. Scientia Agricultura Sinica, 2019, 52(24): 4470-4483.
[13] WANG JunJie,CHEN Ling,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Effects of Hyperspectral Prediction on Leaf Nitrogen Content and the Grain Protein Content of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2019, 52(15): 2593-2603.
[14] NIE ZhiGang,LI Guang,WANG Jun,MA WeiWei,LUO CuiPing,DONG LiXia,LU YuLan. Parameter Optimization for the Simulation of Leaf Area Index of Dryland Wheat with the APSIM Model [J]. Scientia Agricultura Sinica, 2019, 52(12): 2056-2068.
[15] WANG HuBing, CAO HongXia, HAO ShuXue, PAN XiaoYan. Responses of Plant Nutrient and Photosynthesis in Greenhouse Tomato to Water-Fertilizer Coupling and Their Relationship with Yield [J]. Scientia Agricultura Sinica, 2019, 52(10): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!