Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (16): 3060-3073.doi: 10.3864/j.issn.0578-1752.2018.16.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Biomass Estimation in Winter Wheat by UAV Spectral Information and Texture Information Fusion

LIU Chang1,2,3,4, YANG GuiJun2,3,4, LI ZhenHai2,3,4, TANG FuQuan1, WANG JianWen2,3,4ZHANG ChunLan1,2,3,4, ZHANG LiYan2,3,4   

  1. 1College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054; 2National Engineering Research Center for Information Technology in Agriculture, Beijing 100097; 3Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry  of Agriculture, Beijing 100097; 4Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097
  • Received:2018-02-05 Online:2018-08-16 Published:2018-08-16

Abstract: 【Objective】Biomass, an important parameter to characterize vegetation activities, is of great significance for plant growth monitoring and yield forecasting. Hyperspectral remote sensing technology based on the unmanned aerial vehicle (UAV) has the advantages of flexibility, non-destructive and wide coverage, and could also timely and accurately estimate vegetation biomass, so it has become one attention topic in remote sensing application. Since saturation problem existed in the inversion of biomass by spectral features, the objective of this study was to propose a 'image and spectrum' fusion index by integrating the biomass-related texture feature into vegetation index.【Method】In this study, the extracted spectral indices and texture features from UAV hyperspectral imagery were used to first construct biomass models, respectively. Secondly, the 'image and spectrum' fusion indices by combining (multiplying or dividing) the biomass-sensitive vegetation index and texture feature were established to solve the saturation problem by spectral information and texture information fusion and to construct biomass model. Finally, the estimation effect of the biomass model constructed by different indices was compared, and then analyze the ability of the 'image and spectrum' fusion indices to estimate biomass. 【Result】 (1) The vegetation index was almost saturated when LAI was no larger than 5, while these 'image and spectrum' fusion indices, VI×sm658, VI/ent658, VI/dis658, VI/con658, VI/dis514, VI/con514, VI/var514, VI×con802, VI×dis802, began to perform saturation when at LAI was larger than 5. Compared with the vegetation index, the anti-saturation ability of the 'image and spectrum' fusion index was improved obviously. (2) Compared with the vegetation index (excepting for GNDVI、NDVI), the anti-saturation ability of the 'image and spectrum' fusion indices (VI×sm658, VI/ent658, VI/dis658, VI/con658, VI/dis514, VI/con514, VI/var514, VI×con802, VI×dis802) improved effectively, and their correlations with biomass improved as well. Meanwhile the biomass model based on the 'image and spectrum' fusion indices performed well, with R2 and RMSE values of 0.81 and 826.02 kg·hm-2, respectively. (3) Compared with spectral index and texture feature, biomass model accuracy by 'image and spectrum' fusion index (R2=0.81) was significantly higher than that of the vegetation index (R2 = 0.69) and texture feature (R2 = 0.71).【Conclusion】Results showed that both the anti-saturation ability and the accuracy of biomass model constructed by the 'image and spectrum' fusion index were effectively improved, which indicated that spectral information and texture information fusion could achieve a great estimation of winter wheat biomass. The research provided a new way for quantitative inversion of biomass.

Key words: biomass, 'image and spectrum' fusion index, texture feature, saturation, winter wheat

[1]    李佳佳. 小麦生物物理与生物化学参数的高光谱遥感监测[D]. 南京: 南京信息工程大学, 2015.
LI J J. Monitoring bio-physical and bio-chemical parameters of wheat by hyper-spectral remote sensing[D]. Nanjing: Nanjing University of Information Science and Technology, 2015. (in Chinese)
[2]    张凯, 王润元, 王小平, 赵鸿, 韩海涛. 黄土高原春小麦地上鲜生物量高光谱遥感估算模型. 生态学杂志, 2009, 28(6): 1155-1161.
ZHANG K, WANG R Y, WANG X P, ZHAO H, HAN H T. Hyperspectral remote sensing estimation models for aboveground fresh biomass of spring wheat on Loess Plateau. Chinese Journal of Ecology, 2009, 28(6): 1155-1161. (in Chinese)
[3]    尚艳. 不同氮水平下小麦冠层光谱特征及其与农学参数关系研究[D]. 杨凌: 西北农林科技大学, 2015.
SHANG Y. Wheat canopy spectral features and its research relationship with agronomy parameter under different nitrogen levels[D]. Yangling: Northwest Agriculture and Forestry University, 2015. (in Chinese)
[4]    范云豹, 宫兆宁, 赵文吉, 张敏. 基于高光谱遥感的植被生物量反演方法研究. 河北师范大学学报(自然科学版), 2016, 40(3): 267-271.
FAN Y B, GONG Z N, ZHAO W J, ZHANG M. Study on vegetation biomass inversion method based on hyperspectral remote sensing. Journal of Hebei Normal University (Natural Science Edition), 2016, 40(3): 267-271. (in Chinese)
[5]    谭昌伟, 杨昕, 罗明, 马昌, 严翔, 陈亭亭. 以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演. 中国农业科学, 2015, 48(13): 2518-2527.
TAN C W, YANG X, LUO M, MA C, YAN X, CHEN T T. Quantitative inversion of key seedling condition parameters in winter wheat at booting stage using remote sensing based on HJ-CCD images.
Scientia Agricultura Sinica, 2015, 48(13): 2518-2527. (in Chinese)
[6]    陈鹏飞, 王卷乐, 廖秀英, 尹芳, 陈宝瑞, 刘睿. 基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究. 自然资源学报, 2010, 25(7): 1122-1131.
CHEN P F, WANG J L, LIAO X Y, YIN F, CHEN B R, LIU R. Using data of HJ-1A/B for hulunbeier grassland aboveground biomass estimation. Journal of Nature Resources, 2010, 25(7): 1122-1131. (in Chinese)
[7]    高明亮, 宫兆宁, 赵文吉, 高阳, 胡东. 基于植被指数的北京军都山荆条灌丛生物量反演研究. 生态学报, 2014, 34(5): 1178-1188.
GAO M L, GONG Z N, ZHAO W J, GAO Y, HU D. The study of Vitex negundo shrubs canopy biomass inversion in Beijing Jundu mountains area based on vegetation indice. Acta Ecologica Sinica, 2014, 34(5): 1178-1188. (in Chinese)
[8]    赵天舸, 于瑞宏, 张志磊, 白雪松, 曾庆奥. 湿地植被地上生物量遥感估算方法研究进展. 生态学杂志, 2016, 35(7): 1936-1946.
ZHAO T G, YU R H, ZHANG Z L, BAI X S, ZENG Q A. Estimation of wetland vegetation aboveground biomass based on remote sensing data: A review. Chinese Journal of Ecology, 2016, 35(7): 1936-1946. (in Chinese)
[9]    SHIBAYAMA M, AKIYAMA T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 1989, 27(2): 119-127.
[10]   侯学会, 牛铮, 黄妮, 许时光. 小麦生物量和真实叶面积指数的高光谱遥感估算模型. 国土资源遥感, 2012, 24(4): 30-35.
HOU X H, NIU Z, HUANG N, XU S G. The hyperspectral remote sensing estimation models of total biomass and true LAI of wheat. Remote Sensing for Land & Resources, 2012, 24(4): 30-35. (in Chinese)
[11]   刘琼阁, 彭道黎, 涂云燕, 李艳丽, 高东启. 基于偏最小二乘的森林生物量遥感估测. 东北林业大学学报, 2014, 42(7): 44-47.
LIU Q G, PENG D L, TU Y Y, LI Y Y, GAO D Q. Estimating forest biomass by partial least squares regression. Journal of Northeast Forestry University, 2014, 42(7): 44-47. (in Chinese)
[12]   陈鹏飞, Nicolas T, 王纪华, PHILIPPE V, 黄文江, 李保国. 估测作物冠层生物量的新植被指数的研究. 光谱学与光谱分析, 2010, 30(2): 512-517.
CHEN P F, NICOLAS T, WANG J H, PHILIPPE V, HUANG W J, LI B G. New index for crop canopy fresh biomass estimation. Spectroscopy and Spectral Analysis, 2010, 30(2): 512-517. (in Chinese)
[13]   刘俊, 毕华兴, 朱沛林, 孙菁, 朱金兆, 陈涛. 基于 ALOS 遥感数据纹理及纹理指数的柞树蓄积量估测. 农业机械学报, 2014, 45(7): 245-254.
LIU J, BI H X, ZHU P L, SUN J, ZHU J Z, CHEN T. Estimating stand volume of xylosma racemosum forest based on texture parameters and derivative texture indices of ALOS imagery. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 245-254. (in Chinese)
[14]   GU Z J, JU W M, LI L, LI D Q, LIU Y B, FAN W L. Using vegetation indices and texture measures to estimate vegetation fractional coverage (VFC) of planted and natural forests in Nanjing city, China. Advances in Space Research, 2013, 51(7): 1186-1194.
[15]   SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 2011, 115(4): 968-977.
16]    曹庆先, 徐大平, 鞠洪波. 基于TM影像纹理与光谱特征的红树林生物量估算. 林业资源管理, 2010, 12(6): 102-107.
CAO Q X, XU D P, JU H B. The biomass estimation of mangrove community based on the textural features and spectral information of TM images. Forest Resources Management, 2010, 12(6): 102-107. (in Chinese)
[17]   牧其尔, 高志海, 包玉海, 王琫瑜, 白黎娜. 植被指数纹理特征信息估测稀疏植被生物量. 遥感信息, 2016, 31(1): 58-63.
MU Q E, GAO Z H, BAO Y H, WANG B Y, BAI L N. Estimation of sparse vegetation biomass based on grea-level co-occurrence matrix of vegetation indices. Remote Sensing Information, 2016, 31(1): 58-63. (in Chinese)
[18]   YUE J B, YANG G J, LI C C, LI Z H, WANG Y J, FENG H K, XU B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 2017, 9(70): 801-819.
[19]   邓书斌. ENVI遥感图像处理方法. 北京: 科学出版社, 2010.
DENG S B. ENVI Remote Sensing Image Processing Method. Beijing: Science Press, 2010. (in Chinese)
[20]   HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 768-780.
[21]   刘广东. 基于TM影像植被指数和纹理特征的对比关系研究[D]. 重庆: 重庆师范大学, 2010.
LIU G D. Study on the contrast relationships between NDVI and texture features based on TM image [D]. Chongqing: Chongqing Normal University, 2010. (in Chinese)
[22]   FRANKLIN S E, HALL R J, MOSKAL L M. Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing, 2000, 21(1): 61-79.
[23]   TREITZ P, HOWARTH P. Integrating spectral, spatial, and terrain variables for forest ecosystem classification. Photogrammetric Engineering & Remote Sensing, 2000, 66(3): 305-318.
[24]   JOHANSEN K, COOPS N C, GERGEL S E. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment, 2007, 110(1): 29-44.
[25]   FRANKLIN S E, WULDER M A, GERYLO G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia. International Journal of Remote Sensing, 2001, 22(13): 2627-2632.
[26]   KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment, 2006, 102(3/4): 390-401.
[27]   OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. International Journal of Applied Earth Observation & Geoinformation, 2011, 13(5): 701-710.
[28]   李明诗, 谭莹, 潘洁, 彭世揆. 结合光谱、纹理及地形特征的森林生物量建模研究. 遥感信息, 2006(6): 6-9.
LI M S, TAN Y, PAN J, PENG S K. Modeling forest aboveground biomass by combining the spectrum, textures with topographic features. Remote Sensing Information, 2006, 2006(6): 6-9. (in Chinese)
[29]   SARKER M L, NICHOL J, IZ H B, AHMAD B B, RAHMAN A A. Forest biomass estimation using texture measurements of high- resolution dual-polarization C-band SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3371-3384.
[30]   MIGUEL A C, MARTIN R, BERNARDUS H J. Estimation of tropical forest structure from SPOT-5 satellite images. International Journal of Remote Sensing, 2010, 31(10): 2767-2782.
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[5] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[6] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[7] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[8] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[9] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[10] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[11] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[12] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[13] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[14] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[15] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!