Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1948-1959.doi: 10.3864/j.issn.0578-1752.2018.10.014

• HORTICULTURE • Previous Articles     Next Articles

Identification and Expression Analysis Under Abiotic Stresses of OFP Gene Family in Apple

RuiRui XU1,2(), Rui LI2, XiaoFei WANG2, YuJin HAO2   

  1. 1College of Biological and Agricultural Engineering, Weifang University/Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, Weifang 261061, Shandong
    2College of Horticulture Science and Technology, Shandong Agricultural University/National Research Center for Apple Engineering and Technology, Tai’an 271018, Shandong;
  • Received:2017-09-20 Accepted:2017-12-07 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Identification of the OFP (OVATE family protein) genes from apple genome and analysis of gene characteristic, tissue expression pattern and response to abiotic stresses of OFP family genes in apple will be useful to the functional analysis of plant OFP genes. 【Method】 Based on apple genome database, the OFP gene family members were identified and the genes were analyzed using bioinformatics methods. A phylogenetic tree was created using the MEGA5.0 program. Gene structure and chromosomes location were carried out by MapDraw and GSDS separately. Expression pattern analysis of OFP genes in different tissues was done based on the existing microarray database and qRT-PCR. The expression of 13 MdOFPs genes was also analyzed under various stress conditions using qRT-PCR. 【Result】 A total of 28 OFP genes was systematically identified from apple genome and classified into 4 groups including 13, 6, 4 and 5 members according to the gene structure and conserved domain phylogeny relationship. All OFP genes are distributed on 13 apple chromosomes with the largest number six MdOFP on Chr12, suggesting that they have an extensive distribution on the apple chromosomes. Most of the OFP genes have distinctive expression patterns in tissues and response to NaCl and PEG treatment stresses in root and shoot, respectively. MdOFP04 and MdOFP20 were up-regulated obviously in root and shoot, while MdOFP01, MdOFP12 and MdOFP18 have opposite expression pattern in root and shoot under NaCl stress. Temperature stresses significantly regulate the expression of MdOFP and the expression of MdOFP04 and MdOFP17 were significantly increased after high temperature and low temperature stresses. 【Conclusion】 Twenty-eight OFP genes in apple were identified by genome-wide screening. They are classified into four groups and distributed on 13 chromosomes with different tissue patterns and different stress response patterns. These results will be helpful to the functional analysis of OFP genes in apple.

Key words: apple, OFP gene family, phylogeny analysis, stress, gene expression

Table 1

The primers used in the qRT-PCR"

基因名称 Gene name 上游引物(5′-3′) Forward primer (5′-3′) 下游引物(5′-3′) Reverse primer (5′-3′)
MdOFP01 TCCCGTTTAGTTCTTCATCTTTC CAGTGTGTCAATCTCGTCATC
MdOFP03 CGTGGTAGAAAGAGTGTGTC GATAGCAAGCAAGCAGGTC
MdOFP04 CAACAACAACTCGTCCTTACAG TTCCTTCACCACCGCAATG
MdOFP06 CGGAGGATGGGTTGGATTC TTCTTGTTCTTCTTCAGTTCGC
MdOFP07 CGGAGGATGGGTTGGATTC TTCTTGTTCTTCTTCAGTTCGC
MdOFP08 CAATGGAGGAAATGGTGGAATG AGCAGAAAGAGCAAGAAGGAG
MdOFP11 GGAGGAGAAGACGCAATAGAG CCCATCACCACCATCATCAG
MdOFP12 TTCAAGCCGTTCAGCCTCAG GTTCATCACAAGACCGCCATC
MdOFP13 AGAGAGAAACACCACCGAAG TTGCCCTGAGCGAGAAAG
MdOFP16 CTCCTTCTTGCTCTTTCTGC CATCCTCCTCCTGACCTTG
MdOFP17 AGGGTGAATGGTAAGAGCAATC GACGACAGCGACGAAGAAG
MdOFP18 TGCTGTGGTGAAGAAGTCG CCCTGTGATGGTGTGTCG
MdOFP20 TCCTCCTCGCAGTCACAC TTCCTTCACCACCGCAATG
Md18S ACACGGGGAGGTAGTGACAA CCTCCAATGGATCCTCGTTA

Table 2

The Ovate proteins gene family in apple"

基因名称Gene name 基因ID号
Gene Identifier
染色体定位
Chromosome location
编码序列长度
CDS length
(bp)
外显子
数目
Exon no.
大小
Size
(aa)
分子量Molecular weight (Da) 等电点Isoelectric Point 拟南芥同源基因
Best homologs in Arabidopsis
MdOFP01 MDP0000243940 chr2:4251394..4252275 882 1 293 33533.3 9.13 AT5G66270.1
MdOFP02 MDP0000155311 chr2:13187873..13188835 963 1 320 25246.9 9.10 AT1G19860.1
MdOFP03 MDP0000684645 chr3:4952419..4953570 1152 1 383 41697.8 8.99 AT1G19860.1
MdOFP04 MDP0000141642 chr3:16219260..16220244 675 2 224 25723.6 9.51 AT1G19860.1
MdOFP05 MDP0000733399 chr3:31034178..31034924 747 1 248 79142.9 5.58 AT2G02160.1
MdOFP06 MDP0000134728 chr4:17309604..17310695 1092 1 363 72112.4 6.00 AT5G12440.3
MdOFP07 MDP0000147045 chr4:17310063..17310721 627 2 208 26669.0 8.73 AT3G12130.1
MdOFP08 MDP0000158931 chr5:941980..942486 507 1 168 51797.0 8.27 AT5G18550.1
MdOFP09 MDP0000241313 chr5:5755844..5757320 1296 2 431 30624.6 9.44 AT3G12130.1
MdOFP10 MDP0000402356 chr7:5438947..5439702 756 1 251 40999.8 8.81 AT3G08505
MdOFP11 MDP0000296199 chr8:3579420..3580445 1026 1 341 47229.3 7.10 AT2G41900.1
MdOFP12 MDP0000155705 chr10:26964000..26965493 1296 2 431 79656.8 6.14 AT3G51950
MdOFP13 MDP0000909475 chr10:32149450..32149956 507 1 168 16845.6 8.27 AT5G26749.1
MdOFP14 MDP0000156202 chr11:4775252..4776394 1143 1 380 91640.3 7.22 AT1G10320.1
MdOFP15 MDP0000311969 chr11:22625025..22626007 549 2 182 75934.3 6.24 AT1G30460.1
MdOFP16 MDP0000127146 chr11:32348926..32350337 912 2 303 73772.2 6.10 AT1G30460.1
MdOFP17 MDP0000669940 chr12:3242911..3248219 957 3 318 20954.5 6.24 AT3G48440.1
MdOFP18 MDP0000137053 chr12:3317131..3317688 558 1 185 65503.5 9.21 AT1G19860.1
MdOFP19 MDP0000456557 chr12:14175298..14181532 1317 3 438 98062.9 5.78 AT3G51120.1
MdOFP20 MDP0000692068 chr12:21920389..21922396 1098 2 365 20469.1 9.34 AT1G66810.1
MdOFP21 MDP0000238712 chr12:21920806..21921922 1065 2 354 93378.1 8.34 AT3G27700
MdOFP22 MDP0000332435 chr12:25821429..25822584 1161 1 386 77290.9 6.31 AT2G33835.1
MdOFP23 MDP0000410437 chr13:18948503..18949252 750 1 249 76306.6 6.34 AT2G41900.1
MdOFP24 MDP0000943578 chr13:25670394..25671158 765 1 254 57322.6 5.28 AT1G01350.1
MdOFP25 MDP0000243386 chr14:4693458..4695714 1020 2 339 22465.2 6.99 AT3G19360.1
MdOFP26 MDP0000140421 chr15:11737514..11738332 822 1 273 44526 9.32 AT3G47120.1
MdOFP27 MDP0000259366 chr17:16535235..16536098 864 1 287 76587.0 5.93 AT2G02160.1
MdOFP28 MDP0000921224 chr0:61416319..61416894 576 1 191 172448.5 8.12 AT1G21580.1

Fig. 1

The unrooted neighbor joining phylogenetic tree and gene structure of OFP gene family in apple"

Fig. 2

The chromosome location of the OFP gene family in apple"

Fig. 3

Synteny analysis of OFP genes between apple and Arabidopsis"

Fig. 4

Expression profile of MdOFP in different tissues by microarray analysis"

Fig. 5

Expression profile of MdOFP in different tissues in apple"

Fig. 6

Expression analysis of the MdOFP under NaCl and PEG treatment in apple"

Fig. 7

Expression analysis of the MdOFP under high temperature (HT) and low temperature (LT) treatment in apple"

[1] LIU J, VAN ECK J, CONG B, TANKSLEY S D.A new class of regulatory genes underlying the cause of pear-shaped tomato fruit.Proceedings of the National Academy of Sciences of the USA, 2002, 99: 13302-13306.
doi: 10.1073/pnas.162485999 pmid: 12242331
[2] WANG S, CHANG Y, GUO J, CHEN J G.Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation.Plant Journal, 2007, 50: 858-872.
doi: 10.1111/j.1365-313X.2007.03096.x pmid: 17461792
[3] WANG S, CHANG Y, GUO J, ZENG Q, ELLIS B E, CHEN J G.Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development.PLoS ONE, 2011, 6: e23896.
doi: 10.1371/journal.pone.0023896 pmid: 3160338
[4] 江成. 光皮桦BlOFPs基因的克隆及其功能研究[D]. 杭州: 浙江农林大学, 2014.
JIANG C.Isolation and functional analysis of BlOFPs genes in Betula luminifera [D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese)
[5] HUANG Z, VAN HOUTEN J, GONZALEZ G, XIAO H, VAN DER KNAAP E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.Molecular Genetics Genomics, 2013, 288: 111-129.
[6] YU H, JIANG W, LIU Q, ZHANG H, PIAO M, CHEN Z, BIAN M.Expression pattern and subcellular localization of the ovate protein family in rice.PLoS ONE, 2015, 10: e0118966.
doi: 10.1371/journal.pone.0118966 pmid: 25760462
[7] 于慧. 水稻OsOFP转录因子家族基因克隆与功能分析[D]. 吉林: 吉林大学, 2015.
YU H.Gene cloning and functional analysis of the OsOFP transcription factor in rice [D]. Jilin: Jilin University, 2015. (in Chinese)
[8] 林冰. 水稻OFP1与OFP2的转基因功能研究[D]. 江苏: 扬州大学, 2011.
LIN B.Functional analysis of the OsOFP1 and OsOFP2 gene in rice [D]. Jiangsu: Yangzhou University, 2011. (in Chinese)
[9] HACKBUSCH J, RICHTER K, MULLER J, SALAMINI F, UHRIG J F.A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences of the USA, 2005, 102: 4908-4912.
[10] WANG Y K, CHANG W C, LIU P F, HSIAO M K, LIN C T,LIN S M,PAN R L.Ovate family protein 1 as a plant Ku70 interacting protein involving in DNA double-strand break repair. Plant Molecular Biology, 2010, 74(4/5): 453-466.
doi: 10.1007/s11103-010-9685-5 pmid: 20844935
[11] PAGNUSSAT G C, YU H J, SUNDARESAN V.Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. The Plant Cell, 2007, 19: 3578-3592.
doi: 10.1105/tpc.107.054890
[12] LI E, WANG S, LIU Y, CHEN J G, DOUGLAS C J.OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. Plant Journal, 2011, 67: 328-341.
doi: 10.1111/j.1365-313X.2011.04595.x pmid: 21457372
[13] LIU Y, DOUGLAS C J.A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signaling Behavoir, 2015, 10(7): e1033126.
doi: 10.1080/15592324.2015.1033126 pmid: 26107719
[14] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A,et al. The genome of the domesticated apple(Malus× domestica Borkh.). Nature Genetics, 2010, 42: 833-839.
[15] DUVICK J, FU A, MUPPIRALA U, SABHARWAL M, WILKERSON M D, LAWRENCE CJ, LUSHBOUGH C, BRENDEL V.PlantGDB: A resource for comparative plant genomics.Nucleic Acids Research, 2008, 36: D959-965.
doi: 10.1093/nar/gkm1041 pmid: 18063570
[16] POOLE R L.The TAIR database. Methods Molecular Biology, 2007, 406: 179-212.
[17] ZHANG S Z, CHEN G H, LIU Y K, CHEN H, YANG G D, YUAN X W, JIANG Z S, SHU H R.Apple gene function and gene family database: an integrated bioinformatics database for apple research.Plant Growth Regulation, 2013, 70: 199-206.
doi: 10.1007/s10725-013-9787-6
[18] XU Q, DUNBRACK R L.Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB.Bioinformatics, 2012, 28(21): 2763-2772.
doi: 10.1093/bioinformatics/bts533 pmid: 22942020
[19] 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46(12): 2501-2513.
doi: 10.3864/j.issn.0578-1752.2013.12.011
WANG X F, LIU X, SU L, SUN Y J, ZHANG S Z, HAO Y J, YOU C X.Identification, evolution and expression analysis of the LBD gene family in tomato.Scientia Agricultura Sinica, 2013, 46(12): 2501-2513. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.011
[20] MARCHLER-BAUER A, ZHENG C, CHITSAZ F, DERBYSHIRE M K, GEER L Y, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LANCZYCKI C J.CDD: conserved domains and protein three-dimensional structure.Nucleic Acids Research, 2012, 30(1): 281-283.
doi: 10.1093/nar/gks1243 pmid: 3531192
[21] FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L, TATE J, PUNTA M.Pfam: the protein families database.Nucleic Acids Research, 2014, 42: D222-230.
[22] ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E.ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40: W597-603.
doi: 10.1093/nar/gks400 pmid: 22661580
[23] EDGAR R C.MUSCLE: a multiple sequence alignment method with reduced time and space complexity.BMC Bioinformatics, 2004, 5: 113.
doi: 10.1186/1471-2105-5-113 pmid: 15318951
[24] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[25] LIU R H, MENG J L.MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data.Hereditas, 2003, 25(3): 317-321.
doi: 10.1016/S0891-0618(02)00103-5 pmid: 15639879
[26] GUO A Y, ZHU Q H, CHEN X, LUO J C.GSDS: a gene structure display server.Hereditas, 2007, 29(8): 1023-1026.
doi: 10.1360/yc-007-1023 pmid: 17681935
[27] KRZYWINSKI M, SCHEIN J, BIROL I, CONNORS J, GASCOYNE R, HORSMAN D, JONES S J, MARRA M A.Circos: An information aesthetic for comparative genomics.Genome Research, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[28] LYONS E, PEDERSEN B, KANE J, ALAM M, MING R, TANG H, WANG X, BOWERS J, PATERSON A, LISCH D, FREELING M.Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiology, 2008, 148(4): 1772-1781.
doi: 10.1104/pp.108.124867 pmid: 18952863
[29] LIBRADO P, ROZAS J.DnaSP v5: A software for comprehensive analysis of DNA polymorphism data.Bioinformatics, 2009, 25: 1451-1452.
doi: 10.1093/bioinformatics/btp187 pmid: 19346325
[30] ROZAS J.DNA sequence polymorphism analysis using DnaSP.Methods Molecular Biology, 2009, 537: 337-350.
doi: 10.1007/978-1-59745-251-9_17 pmid: 19378153
[31] VALLIYODAN B, NGUYEN H T.Understanding regulatory networks and engineering for enhanced drought tolerance in plants.Current Opinion in Plant Biology, 2006, 9: 189-195.
doi: 10.1016/j.pbi.2006.01.019 pmid: 16483835
[32] PIERIK R, TEATERINK C.The art of being flexible: How to escape from shade, salt, and drought.Plant Physiology, 2014, 166: 5-22.
[33] XU Z Z, ZHOU G S, SHIMIZU H.Plant responses to drought and rewatering.Plant Signaling and Behavior, 2010, 5(6): 649-654.
doi: 10.4161/psb.5.6.11398 pmid: 3001553
[1] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[2] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[3] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[4] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[5] SUN Zheng, LAI ZhongXiao, ZHAO XiaoMin, JIANG ZhiLi, CHEN GuangYou, MA ZhiQing. Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland [J]. Scientia Agricultura Sinica, 2023, 56(6): 1102-1112.
[6] CUI HongJie, LU ChunTing, PAN LiQin, HU Hui, ZHONG PeiYun, ZHU JieYing, ZHANG KaiZhao, HUANG XiaoHong. Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway [J]. Scientia Agricultura Sinica, 2023, 56(5): 1007-1018.
[7] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[8] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[9] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[10] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[11] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[12] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[13] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[14] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[15] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!