Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (8): 1431-1447.doi: 10.3864/j.issn.0578-1752.2018.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination

XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2017-11-03 Online:2018-04-16 Published:2018-04-16

Abstract: 【Objective】Foxtail millet (Setaria italica L.) is a drought tolerant crop. The objective of this research is to get a lot of differently expressed genes during germination in response to drought stress by high-throughput sequencing, then to obtain the key gene and the related molecular mechanism at seed germination stage in foxtail millet under drought stress.【Method】Seed of JinGu45 was treated with 18%PEG-6000(PEG-stress)and distilled water germination(control sample) at 1 h, 10 h and 18 h as a test material, and the activities of SOD, POD and CAT were measured, respectively. SOD activity was assayed by nitro blue tetrazolium (NBT) method. POD activity was determined by guaiacol method, and the activity of CAT was measured by colorimetric method. Sample of control and PEG-stress that germinated for 10h and 18h were used to construct cDNA library by gene expression profiling technology. We compared reads to the reference genome by using Bowtie and analysed the result by using RSEM. Differential expression analysis used DESeq. The functional annotation of differently expresse genes were obtained by using NR, Swiss-Prot, KEGG, COG and GO online databases. The key genes that regulate germination in foxtail millet was obtained through analyse DEGs. The reliability of sequencing results was comfirmed by qRT-PCR. 【Result】The SOD activity of PEG-stress sample was higher than that in the control sample, but the activity of POD and CAT were lower than that in the control group. With the time of germination changes, the activity of SOD was increased, but the activity of CAT and POD was gradually decreased. The sequences of gene expression profile was highly consistent with the selected reference genome sequence, and the gene expression was highly heterogeneous. Expression analysis showed a total of 35470 genes, and with the selection criteria of RPKM ≥0.01, there were 24030 and 24 486 genes in the control samples and 24 019 and 23 877 genes in the samples under PEG drought stress, respectively. 456 and 545 DEGs were screened out during millet germination at 10h and 18h under drought stress, in which 87 and 267 DEGs were up-regulated and 369 and 278 DEGs were down-regulated. GO enrichment analysis showed that these DEGs were mainly relating to metabolism process, cell stimulation and response process. The KEGG enrichment analysis showed that these DEGs were associated with phenylpropanoid metabolism and plant hormone signal transduction. The results obtained from five genes tested by RT-PCR agreed with the trend of regulation identified by gene expression profile. 【Conclusion】DEGs were widely involved in the metabolism of biomacromolecule such as sugar, protein, nucleic acid, secondary metabolism and energy metabolism. SnRK2 and PAL genes may regulate seed germination in foxtail millet under drought stress.

Key words: foxtail millet (Searia italic L.), drought stress, seed germination, gene expression profile

[1]    LATA C, PRASAD M. Setaria genome sequencing: an overview. Journal of Plant Biochemistry and Biotechnology, 2013, 22(3): 257-260.
[2]    张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41(3): 282-285.
ZHANG Y M, LIU X D, MA J P, WEN Q F, HAN Y H. Research progress on drought resistance in foxtail millet(Setaria Italica L.). Journal of Shanxi Agricultural Sciences, 2013, 41(3): 282-285. (in Chinese)
[3]    崔纪菡, 范佳兴, 李顺国, 赵宇, 刘猛, 宋世佳, 任晓利, 刘斐, 南春梅, 夏雪岩. 谷子抗旱性鉴定研究进展. 东北农业大学学报, 2017, 48(1): 89-96.
CUI J H, FAN J X, LI S G, ZHAO Y, LIU M, SONG S J, REN X L, LIU P, NAN C M, XIA X Y. Research advance on evaluation of drought resistance of Setaria italica. Journal of Northeast Agricultural University, 2017, 48(1): 89-96. (in Chinese)
[4]    裴帅帅, 尹美强, 温银元, 黄明镜, 张彬, 郭平毅, 王玉国, 原向阳. 不同品种谷子种子萌发期对干旱胁迫的生理响应及其抗旱性评价. 核农学报, 2014, 28(10): 1897-1904.
PEI S S, YIN M Q, WENG Y Y, HUANG M J, ZHANG B, GUO P Y, WANG Y G, YUAN X Y. Physiological response of foxtail millet to drought stress during seed germination and drought resistance evaluation. Journal of Nuclear Agricultural Sciences, 2014, 28(10): 1897-1904. (in Chinese)
[5]    代小冬, 杨育峰, 朱灿灿, 鲁晓民, 王春义, 杨晓平, 杨国红, 李君霞. 谷子萌芽期对干旱胁迫的响应及抗旱性评价. 华北农学报, 2015, 30(4): 139-144.
DAI X D, YANG Y F, ZHU C C, LU X M, WANG C Y, YANG X P, YANG G H, LI J X. Seed germination response to drought stress and drought resistance evaluation of foxtail millet. Acta agriculturae boreali-sinica, 2015, 30(4): 139-144. (in Chinese)
[6]    LATA C, GUPTA S, PRASAD M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2012, 33(3): 328-343.
[7]    BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENLINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X, WU X, MITROS T, TRIPLETT J, YANG X, YE C Y, MAURO-HERRERA M, WANG L, LI P, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M R. eference genome sequence of the model plant setaria. Nature Biotechnology, 2012, 30(6): 555-561.
[8]    ZHANG G, LIU X, QUAN Z, CHENGG S, XU X, PAN S, XIE M, ZENG P, YUE Z, WANG W, TAO Y, BIAN C, HAN C, XIA Q, PENG X, CAO R, YANG X, ZHAN D, HU J, ZHANG Y, LI H, LI H, LI N, WANG J, WANG C, WANG R, GUO T, CAI Y, LIU C, XIANG H, SHI Q, HUANG P, CHEN Q, LI Y, WANG J, ZHAO Z, WANG J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30: 549-554.
[9]    赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39(2): 360-367.
ZHAO J F, YU A L, TIAN G, DU Y W, GUO E H, DIAO X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agronomica sinica, 2013, 39(2): 360-367. (in Chinese)
[10]   LATA C, SAHU P P, PRASAD M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochemical & Biophysical Research Communications, 2010, 393(4): 720-727.
[11]   崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子DnaJ蛋白基因的克隆. 华北农学报, 2007, 22(4): 9-13.
CUI R L, ZHI H, WANG Y F, LI W, LI H Q, HUANG Z J, DIAO X M. Cloning of DnaJ-like protein gene from foxtail millet. Acta agriculturae boreali-sinica, 2007, 22(4): 9-13. (in Chinese)
[12]   杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究, 2011, 29(5): 69-74.
YANG X W, HU Y G. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agricultural Research in the Arid Areas, 2011, 29(5): 69-74. (in Chinese)
[13]   张彬, 禾璐, 候蕊, 路阳, 马芳芳, 王兴春, 杨致荣, 韩渊怀, 李红英. 谷子C2H2型锌指蛋白基因SiZFP182的克隆及表达分析. 中国农业大学学报, 2015, 20(5): 9-15.
ZHANG B, HE L, HOU R, LU Y, MA F F, WANG X C, YANG Z R, HAN Y H, LI H Y. Isolation and functional analysis of a C2H2-type zinc finger protein gene SiZFP182 in foxtail millet. Journal of China Agricultural university, 2015, 20(5): 9-15. (in Chinese)
[14]   窦祎凝, 秦玉海, 闵东红, 张小红, 王二辉, 刁现民, 贾冠清, 徐兆师, 李连城, 马有志, 陈明.谷子转录因子SiNAC18通过ABA信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017, 50(16): 3071-3081.
DOU Y N, QIN Y H, MIN D H, ZHANG X H, WANG E H, DIAO X M, JIA G Q, XU Z S, LI L C, MA Y Z, CHEN M. Transcription factor SiNAC18 positively regulates seed germination under drought stress through ABA signaling pathway in Foxtail Millet (Setaria italic L.). Scientia Agricultura Sinica, 2017, 50(16): 3071-3081. (in Chinese)
[15]   王一帆, 李臻, 潘教文, 李颖秀, 王庆国, 管延安, 刘炜. 谷子SiRLK35基因克隆及功能分析.遗传, 2017, 39(5): 413-422.
WANG Y F, LI Z, PAN J W, LI Y X, WANG Q G, GUAN Y A, LIU W. Cloning and functional analysis of the SiRLK35 gene in Setaria italic L.. Hereditas (Beijing), 2017, 39(5): 413-422. (in Chinese)
[16]   LANGMEAD B, TRAPNELL C. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25.
[17]   MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[18]   Anders S, Huber W. Differential expression analysis for sequence count data. Genome biology, 2010, 11(10): R106.
[19]   邓泱泱, 荔建琦, 吴松锋, 朱云平, 陈耀文, 贺福初. nr数据库分析及其本地化. 计算机工程, 2006, 32(5): 71-74.
DENG Y Y, LI J Q, WU S F, ZHU Y P, CHEN Y W, HE F Z. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006, 32(5): 71-74. (in Chinese)
[20]   APWEILER R, BAIROCH A, WU C H, BARKER W C, BOECKMANN B, FERRO S, GASTEIGER E, HUANG H, LOPEZ R, MAGRANE M, MARTIN M J, NATALE D A, O'DONOVAN C, REDASCHI N, YEH L S. UniProt: the universal protein knowledgebase. Nucleic acids research, 2004, 32: D115-D119.
[21]   ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, HARRIS M A, HILL D P, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE J C, RICHARDSON J E, RINGWALD M, RUBIN G M, SHERLOCK G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Geneicst,2000,25(1): 25-29.
[22] TATUS R L, GALPERIN M Y, NATALE D A, KOONIN E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Reserch,2000,28(1): 33-36.
[23]   KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Reserch, 2004(32): D277-D280.
[24]   ALEXA A, RAHNENFUHRER J. topGO: enrichment analysis for gene ontology. R package version 2.8, 2010.
[25]   李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H4、CL研究新进展. 生物信息学, 2007, 5(4): 187-189.
LI L, ZHAO Y, MA J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway. China Journal of Bioinformatics, 2007, 5(4): 187-189. (in Chinese)
[26]   徐晓梅, 杨署光. 苯丙氨酸解氨酶研究进展. 安徽农业科学, 2009, 37(31): 15115-15119.
XU X M, YANG S G. Advances in the studies of phenylalanine ammonialyase. Journal of Anhui Agricultural. Science, 2009, 37(31): 15115-15119. (in Chinese)
[27]   HUANG J, GU M, LAI Z, FAN B, SHI K, ZHOU Y H, YU J Q, CHEN Z. Functional analysis of the Arabidopsis PAL gene family in plant growth,development, and response to environmental stress. Plant Physiology, 2010, 153(4): 1526.
[28]   Bailly C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14: 93-107.
[29]   QIE L F, JIA G Q, ZHANG W Y, JAMES S, SHANG Z L, LI W, LIU B H, LI M Z, CHAI Y, ZHI H, DIAO X M. Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross setaria italic×setaria viridis. PLoS One, 2014, 9(7): e101868 .
[30]   TANG S, LI L, WANG Y Q, CHEN Q N, ZANG W Y, JIA G Q, ZHI H, ZHAO B H, DIAO X M. Genotype specific physiological and transcriptomic responses to drought stress in Setaria italic (an emerging model for Panicoideae grasses). Scientific Reports, 2017, 7(1): 10009.
[31]   杨静, 毛笈华, 于永涛, 李春艳, 王永飞, 胡建广. 低温对甜玉米种子氧化酶活性的影响及相关基因表达分析. 核农学报, 2016, 30(9): 1840-1847.
YANG J, MAO J H, YU Y T, LI C Y, WANG Y F, HU J G. Effects of chilling on antioxidant enzyme activity and related gene expression levels during seed germination.Journal of Nuclear Agricultural Sciences, 2016,30(9): 1840-1847. (in Chinese)
[32]   MIRANSARI M, SMITH D L. Plant hormones and seed germination. Environmental & Experimental Botany, 2014, 99(3): 110-121.
[33]   SHU K, LIU X D, XIE Q, HE Z H. Two faces of one seed: Hormonal regulation of dormancy and germination. Molecular plant, 2016, 9(1): 34-45.
[34]   LOIC R, MANUAL D, KARINE G, JULIE C, JULIA B, CLAUDETTE J, DOMINIQUE J.Seed germination and vigor. Annual reviews, 2012, 63: 507-533.
[35]   LEONIE B, MAARTEN K. Seed Dormancy and Germination. The Arabidopsis Book, 2008, 12(30): e0119.
[36]   FUJII H, ZHU J K, JAGENDORF A T. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8380-8385.
[37]   FUJII H, VERSLUES P E, ZHU J K. Identification of two protein kinases Required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. The Plant Cell, 2007, 19(2): 485-494.
[38]   FUJII H, ZHU J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1717-1722.
[39]   COLEBROOK E H, THOMAS S G, PHILLIPS A L, HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 2014, 217(1): 67-75.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[9] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[10] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[11] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[12] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[13] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[14] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[15] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!