Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1144-1155.doi: 10.3864/j.issn.0578-1752.2018.06.013

;

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Changes in Africa’s Cultivated Land Use and Its Eco-Environmental Factors Over 2000-2010

ZHANG Li, WU WenBin, SONG Qian, ZONG ZhaoWei, HU Qiong, XIANG MingTao, LU Miao   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Beijing 100081
  • Received:2017-04-23 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】 The objective of this study is to investigate the arable land resources of Africa, the second largest continent in the world, to accurately reveal the dynamic changes in cultivated land use and its eco-environmental factors over 2000-2010. 【Method】 The 2000 and 2010 Africa’s cultivated land layers of GlobeLand30, the world's first global land cover datasets at a 30 m resolution, were combined to understand the area, spatial pattern and intensive use changes in cultivated land at different scales and regions. 【Result】 During 2000-2010, the total cultivated land in Africa had increased by 1 540.06×104 hm2, with a net change rate of 7.42%. At regional level, Central Africa (10.42%) had the largest change rate of cultivated land use, which was followed by East Africa (9.49%), West Africa (7.55%), North Africa (6.74%) and South Africa (4.86%). The top ten countries with largest increase of cultivated land area were: Nigeria, Tanzania, Sudan, Kenya, Mozambique, Chad, Algeria, Zambia, Zimbabwe, and Burkina Faso, while Cote d’Ivoire, Mali, Angola, Ghana, Malawi, Tunisia, Burundi, Rwanda, Congo, and South Africa were the top ten countries with largest decreased cultivated land area. The multiple cropping index was 98.11% in 2010 and its change rate was 13.54% during 2000-2010. There was obvious difference in cultivated land change across regions. In general, cultivated land increased at longitude or latitude zones, among which the Eastern Hemisphere and Northern Hemisphere increased most. The increased cultivated land was mainly from forest, grassland and shrub, accounting for 15.19%, 66.37% and 11.20%, respectively, while the decreased cultivated is due to the conversion from cultivated land to forest, grassland and shrub, accounting for 21.15%, 61.19% and 11.78%, respectively. The area of increased cultivated land was much larger than the decreased cultivated land. In terms of the relationships between cultivated land change and eco-environment factors, the most obvious change in cultivated land were at zones with average temperature of 20-30 ºC and an average annual precipitation of 600-1 200 mm, and zones with elevation of 500-1 000 m and slope of less than 2 degrees. 【Conclusion】 The cultivated land area as well as its spatial patterns in Africa changed significantly over 2000-2010, and there were obvious differences across regions and countries. This study has explored the change characteristics of spatio-temporal patterns of cultivated land in Africa, the results of which provides the essential information for analyzing the spatial distribution of global cultivated land and understanding the change patterns and associated differences across different regions. It can also offer scientific guidance on agricultural decision making and land ownership adjustment in regions with significant cultivated land change so as to improve its food production and to guarantee the global food security.

Key words: Africa, cultivated land, spatial pattern, change, GlobeLand30

[1]    FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, O CONNELL C, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTROM J, SHEEHAN J, SIEBERT S, TILMAN D, ZAKS D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342.
[2]    杨艳昭, 吴艳娟, 封志明. 非洲粮食产量波动时空格局的定量化研究. 资源科学, 2014, 36(2): 361-369.
YANG Y Z, WU Y J, FENG Z M. Spatial-temporal patterns and regional differences of cereals production fluctuation in Africa. Resources Science, 2014, 36(2): 361-369. (in Chinese)
[3]    赵文武. 世界主要国家耕地动态变化及其影响因素. 生态学报, 2012, 32(20): 6452-6462.
ZHAO W W. Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecologica Sinica, 2012, 32(20): 6452-6462. (in Chinese)
[4]    FAO, IFAD and WFP. 2014. the State of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition. Rome, FAO.
[5]    FOLEY J A. Global consequences of land use. Science, 2005, 309(5734): 570-574.
[6]    唐华俊, 吴文斌, 余强毅, 夏天, 杨鹏, 李正国. 农业土地系统研究及其关键科学问题. 中国农业科学, 2015, 48(5): 900-910.
TANG H J, WU W B, YU Q Y, XIA T, YANG P, LI Z G. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 2015, 48(05): 900-910. (in Chinese)
[7]    陆苗, 吴文斌, 张莉, 廖安平, 彭舒, 唐华俊. 不同耕地数据集在中国区域的对比研究. 中国科学: 地球科学, 2016, 46(11): 1459-1471.
LU M, WU W B, ZHANG L, LIAO A P, PENG S, TANG H. A comparative analysis of five global cropland datasets in China. Science China Earth Sciences, 2016, 46(11): 1459-1471. (in Chinese)
[8]    黄善林, 卢新海. 当前国际上海外耕地投资状况及其评析. 中国土地科学, 2010, 24(7):71-76.
HUANG S L, LU X H. Status and comments on current overseas farmland investments throughout the world. China Land Sciences, 2010, 24(7):71-76. (in Chinese)
[9]    胡娈运, Chen Y L, 徐玥, 赵圆圆, 俞乐, 王杰, 宫鹏. 基于快速聚类方法的30m分辨率中国土地覆盖遥感制图. 中国科学:地球科学, 2014, 44: 1621-1633.
HU L Y, CHEN Y L, XU Y ZHAO Y Y, YU L, WANG J, GONG P. A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST. Science China Earth Sciences. 2014, 44: 1621-1633. (in Chinese)
[10]   俞乐,王杰, 李雪草, 李丛丛, 赵圆圆, 宫鹏. 基于多源数据集成的多分辨率全球地表覆盖制图. 中国科学:地球科学, 2014, 44: 1646-1660.
YU L, WANG J, LI X C, LI C C, ZHAO Y Y, GONG P. A multi-resolution global land cover dataset through multisource data aggregation. Science China Earth Sciences, 2014, 44: 1646-1660. (in Chinese)
[11]   RAMANKUTTY N, FOLEY J A. Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles, 1998, 12(4): 667-685.
[12]   RAMANKUTTY N, EVAN A T, MONFREDA C, FOLEY J A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 2008, 22, GB1003. doi:10.1029/2007GB002952.
[13]   FRITZ S, SEE L, MCCALLUM I, YOU L, BUN A, MOLTCHANOVA  E, DUERAUER M, ALBRECHT F, SCHILL C, PERGER C, HAVLIK P, MOSNIER A, THORNTON P, WOOD-SICHRA U, HERRERO M, BECKER-RESHEF I, JUSTICE C, HANSEN M, GONG P, ABDEL A S, CIPRIANI A, CUMANI R, CECCHI G, CONCHEDDA G, FERREIRA S, GOMEZ A, HAFFANI M, KAYITAKIRE F, MALANDING J, MUELLER R, NEWBY T, NONGUIERMA A, OLUSEGUN A, ORTNER S, RAJAK D R, ROCHA J, SCHEPASCHENKO D, SCHEPASCHENKO M, TEREKHOV A, TIANGWA A, VANCUTSEM C, VINTROU E, WENBIN W, VAN DER VELDE M, DUNWOODY A, KRAXNER F, OBERSTIENER M. Mapping global cropland and field size. Global Change Biology, 2015, 21(5): 1980-1992.
[14]   FRITZ S, YOU L, BUN A, SEE L, MCCALLUM I, SCHILL C, PERGER C, LIU J G, HANSEN M, OBERSTEINER M. Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophysical Research Letters, 2011, 38, L04404, doi:10.1029/ 2010GL046213.
[15]   刘纪远, 张增祥, 庄大方, 王一谋, 周万村, 张树文, 李仁东, 江南, 吴世新. 20世纪90年代中国土地利用变化时空特征及其成因分析. 地理研究, 2003, 22(1):1-12.
LIU J Y, ZHANG Z X, ZHUANG D F, ZHOU W C, ZHANG S W, JIANG N, WU S X. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geographical Research. 2003, 22(1): 1-12. (in Chinese)
[16]   朱鹏, 宫鹏. 全球陆表湿地潜在分布区制图及遥感验证. 中国科学: 地球科学, 2014, 44:1610-1620.
ZHU P, GONG P. Suitability mapping of global wetland areas and validation with remotely sensed data. Science China Earth Sciences. 2014, 44: 1610-1620. (in Chinese)
[17]   YAO Z Y, ZHANG L J, TANG S H, LI X X, HAO T T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. Journal of Geographical Sciences. 2017, 27(7): 771-785.
[18]   SULIEMAN H M, ELAGIB N A. Implications of climate, land-use and land-cover changes for pastoralism in eastern Sudan. Journal of Arid Environments, 2012, 85: 132-141.
[19]   DORIGO W A, WAGNER W, HOHENSINN R, HAHN S, PAULIK C, XAVER A, GRUBER A, DRUSCH M, MECKLENBURG S, VAN OEVELEN P, ROBOCK A, JACKSON T. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 2011, 15: 1675-1698.
[20]   陈军, 陈晋, 宫鹏, 廖安平, 何超英. 全球地表覆盖高分辨率遥感制图. 地理信息世界, 2011(2): 12-14.
CHEN J, CHEN J, GONG P, LIAO A P, HE C Y. Higher resolution global land cover mapping. Geomatics World, 2011(2): 12-14. (in Chinese)
[21]   何超英, 廖安平, 陈志刚, 陈利军. NDVI时间序列在全球耕地提取中的应用. 地理信息世界, 2013, 20(2): 66-69.
HE C Y, LIAO A P, CHEN Z G, CHEN L J. Application of NDVI time-series in global cropland classification. Geomatics World, 2013, 20(2): 66-69. (in Chinese)
[22]   BAN Y, GONG P, GIRI C. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 1-6.
[23]   陈军, 陈晋, 廖安平, 曹鑫, 陈利军, 陈学泓, 彭舒, 韩刚, 张宏伟, 何超英, 武昊, 陆苗. 全球30m地表覆盖遥感制图的总体技术. 测绘学报, 2014, 43(6): 551-557.
CHEN J, CHEN J, LIAO A, CAO X, CHEN L, CHEN X, PENG S, HAN G, ZHANG H, HE C, WU H, LU M. Concepts and key techniques for 30m Global Land Cover Mapping. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551-557. (in Chinese)
[24]   CHEN J, CHEN J, LIAO A, CAO X, CHEN L, CHEN X, HE C, HAN G, PENG S, LU M, ZHANG W, TONG X, MILLS J. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
[25]   张宇硕, 陈军, 陈利军, 李然, 张委伟, 鲁楠, 刘吉羽. 2000-2010年西伯利亚地表覆盖变化特征—基于GlobeLand30的分析. 地理科学进展, 2015, 34(10): 1324-1333.
ZHANG Y S, CHEN J, CHEN L J, LI R, ZHANG W W, LU N, LIU J Y. Characteristics of land cover change in Siberia based on GlobeLand30, 2000-2010. Progress in Geography, 2015, 34(10): 1324-1333. (in Chinese)
[26]   杨洋, 麻馨月, 何春阳. 基于GlobeLand 30 的耕地资源损失过程研究—以环渤海地区为例. 中国土地科学, 2016, 30(7): 72-79.
YANG Y, MA X Y, HE C Y. The loss process of cultivated land based on GlobeLand 30: A case study of Bohai Rim. China Land Sciences, 2016, 30(7): 72-79. (in Chinese)
[27]   曹鑫, 陈学泓, 张委伟, 廖安平, 陈利军, 陈志刚, 陈晋. 全球30m空间分辨率耕地遥感制图研究. 中国科学:地球科学, 2016, 46(11): 1426-1435.
CAO X, CHEN X H, ZHANG W W, LIAO A P, CHEN L J, CHEN Z G, CHEN J. Global cultivated land mapping at 30 m spatial resolution. Science China Earth Sciences, 2016, 46(11): 1426-1435. (in Chinese)
[28]   刘吉羽, 彭舒, 陈军, 廖安平, 张宇硕. 基于知识的GlobeLand30耕地数据质量检查方法与工程实践. 测绘通报, 2015(4): 42-48.
LIU J Y, PENG S, CHEN J, LIAO A P, ZHANG Y S. Knowledge based quality checking method and engineering practice of globeLand30 cropland data. Bulletin of Surveying and Mapping, 2015(4): 42-48. (in Chinese)
[29]   左丽君, 张増祥, 董婷婷, 汪潇. 耕地复种指数研究的国内外进展. 自然资源学报, 2009, 24(3): 553-560.
ZUO L J, ZHANG Z X, DONG T T, WANG X. Progress in the research on the multiple cropping index. Journal of Natural Resources, 2009, 24(3): 553-560. (in Chinese)
[30]   徐峰. 不同生态环境背景下近十年中国耕地动态变化分析[D]. 北京: 中国科学院研究生院, 2003.
XU F. Analysis of cultivated land dynamic change in China under different ecological environment background in nearly decade [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2003. (in Chinese)
[31]   张丽娟, 姚子艳, 唐世浩, 李侠祥, 郝甜甜. 20世纪80年代以来全球耕地变化的基本特征及空间格局. 地理学报, 2017, 72(7): 1235-1247.
ZHANG Z J, YAO Z Y, TANG S H, LI X X, HAO T T. Spatiotemporal characteristics and patterns of the global cultivated land since the 1980s. Acta Geographica Sinica, 2017, 72(7): 1235-1247. (in Chinese)
[32]   胡琼, 吴文斌, 项铭涛, 陈迪, 龙禹桥, 宋茜, 刘逸竹, 陆苗, 余强毅. 全球耕地利用格局时空变化分析. 中国农业科学, 2018, 51(22): 1091-1105.
HU Q, WU W B, XIANG M T, CHEN D, LONG Y Q, SONG Q, LIU Y Z, LU M, YU Q Y. Spatio-temporal Changes in Global Cultivated Land over 2000-2010. Scientia Agricultura Sinica, 2018, 51(22): 1091-1105. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[4] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[5] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[6] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[7] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[8] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[9] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[10] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[11] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[12] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[13] HUANG YuQing,SUN YanYan,LUO RongZheng,Awangcuomu ,LU SuWen,FAN XiuCai,WANG Chen,LIU ChongHuai,FANG JingGui. A New Classification Standard for Different Grape Cluster Shapes and Investigation on Cluster Shape Dynamic Development Process [J]. Scientia Agricultura Sinica, 2021, 54(11): 2389-2405.
[14] WANG Fei,SUN ZengGuang,YIN Fei,GUO BinBin,LIU Ling,JIAO NianYuan. Effects of Elevated Temperature and CO2 on the Photosynthetic Characteristics of Intercropping Maize [J]. Scientia Agricultura Sinica, 2021, 54(1): 58-70.
[15] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!