Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (3): 406-416.doi: 10.3864/j.issn.0578-1752.2018.03.002

• Nutrient Management in Soil-Crop-Animal Production System • Previous Articles     Next Articles

Significance and Research Priority of Nutrient Management in Soil-Crop-Animal Production System in China

MA Lin1, BAI ZhaoHai1, WANG Xuan1, CAO YuBo1, MA WenQi2, ZHANG FuSuo3   

  1. 1Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050021; 2College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071001,  Hebei; 3College of Resources and Environmental Sciences, China Agricultural University/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193
  • Received:2017-07-31 Online:2018-02-01 Published:2018-02-01

Abstract: With a rapid development and decoupling between crop and animal production, China already faces serious groundwater pollution by nitrate leaching, eutrophication of surface waters, as well as air quality degradation caused by over-fertilization and manure discharge. It is important to (1) quantify nutrient flows in “soil-crop-livestock” production system, (2) optimize nutrient flows and recycling by coupling crop and livestock systems, and (3) mitigate nutrient losses and improve nutrient use efficiency. These studies provide a scientific basis for national action (e.g. reduction of chemical fertilizer application, replacement of chemical fertilizer by manure, resource utilization of livestock waste and mitigation of non-point source pollutions). The objectives of this study are to review the published studies on nutrient management in crop and animal production, analyze the characters of nutrient inputs, use efficiencies and losses of crop and animal production in China in the past decades, and to prospect research priority of nutrient management in soil-crop-animal production systems in China. For increasing productivities of grain, overuse of chemical fertilizer is common, lack of manure recycling. The biggest challenge facing China today is de-coupling crop and animal production. The nutrient use efficiency of crop and animal production decreased and nutrient losses increased dramatically in the past decades in China. The highest emissions are estimated in or around big metropolitans. Coupling crop and animal production is the main solution of sustainable intensive agriculture. According to the international research experiences, research should focus on improving manure management, mitigation of nutrient losses and increasing nutrients recycling rate of agricultural wastes. The integrated nutrient management of the soil-crop-animal production systems has become the focus of global concern. Key research topics of nutrient management in crop and animal production include (1) quantifying nutrient flows and environmental impacts of ‘soil-crop-animal’ production systems, (2) strategies of chemical fertilizer replacement by manure, (3) mitigation options of manure management from ‘feeding-housing-storage-treatment-application’ chain, and (4) farming system design for achieving high productivities and nutrient use efficiencies in crop and animal production.

Key words: integrated crop and animal production, nutrient management, manure recycling, rotation, non-point source pollution, ammonia emission, leaching

[1]    Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
[2]    Guo J H, Liu X J, Zhang J, Shen J L, Han W X, Zhang W F, CHRISTIE P, GOULDING K W, VITOUSEK P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[3]    Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, VITOUSEK P, erisman j w, GOULDING K, CHRISTIE P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
[4]    Wang F H, Dou Z, Ma L, Ma W Q, Sims J T, Zhang F S. Nitrogen mass flow in China’s animal production system and environmental implications. Journal of Environmental Quality, 2010, 39(5): 1537-1544.
[5]    Bai Z H, Ma L, Oenema O, Chen Q, Zhang F S. Nitrogen and phosphorus use efficiencies in dairy production in China. Journal of Environmental Quality, 2013, 42(4): 990-1001.
[6]    Bai Z H, Ma L, Qin W, Chen Q, Oenema O, Zhang F S. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environmental Science & Technology, 2014, 48(21): 12742-12749.
[7]    Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, JOHNES P J, KATZENBERGER J, MArtinelli l a, matson p a, Nziguheba G, ojima d, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519-1520.
[8]    Ma L, Guo J H, Velthof G L, Li Y M, Chen Q, Ma W Q, Oenema O, Zhang F S. Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to 2008. Global Environmental Change, 2014, 28(1): 192-204.
[9]    Zhang Y, Dore A J, Ma L, Liu X J, Ma W Q, Cape J N, Zhang F S. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environmental Pollution, 2010, 158(2): 490-501.
[10]   Sutton M A, Bleeker A, Howard C M, Bekunda M, Grizzetti B, De Vries W, van Grinsven H J M, Abrol Y P, Adhya T K, Billen G, Davidson E A, Datta A, Diaz R, Erisman J W, Liu X J, Oenema O, Palm C, Raghuram N, Reis S, Scholz R W, Sims T, Westhoek H, Zhang F S. Our nutrient world: The challenge to produce more food and energy with less pollution//Global Overview of Nutrient Management. Edinburgh, UK: Centre for Ecology and Hydrology (CEH), 2013.
[11]   Sutton M A. European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press, 2011.
[12]   Doering O, Galloway J N, Theis T L, Aneja V, Boyer E, Cassman K G, cowling e b, dickerson r r, herz w, hey d l, Kohn R, LIGHTY J S, MITSCH W, MOOMAW W, MOSIER A, PAERL H, SHAW B, STACEY P. Reactive nitrogen in the United States: An analysis of inputs, flows, consequences and management options[R]. Washington, D. C.: United States Environmental Protection Agency, 2011.
[13]   Velthof G L, Lesschen J P, Webb J, Pietrzak S, Miatkowski Z, Pinto M, KROS J, Oenema O. The impact of the nitrates directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Science of the Total Environment, 2014, 468/469: 1225-1233.
[14]   Oenema O. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. Journal of Animal Science, 2004, 82: 196-206.
[15]   Bai Z H, Ma L, Jin S Q, Ma W Q, Velthof G L, Oenema  O, LIU L, CHADWICK D, Zhang F S. Nitrogen, phosphorus,  and potassium flows through the manure management chain in China. Environmental Science & Technology, 2016, 50(24): 13409-13418.
[16]   Ma L, Ma W Q, Velthof G L, Wang F H, Qin W, Zhang F S, Oenema O. Modeling nutrient flows in the food chain of China. Journal of Environmental Quality, 2010, 39(4): 1279-1289.
[17]   Ma L, Velthof G L, Wang F H, Qin W, Zhang W F, Liu Z, ZHANG Y, WEI J, LESSCHEN J P, MA W Q, Oenema O, ZHANG F S. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. the Science of the Total Environment, 2012, 434: 51-61.
[18]   Hou Y, Ma L, Gao Z L, Wang F H, Sims J T, Ma W Q, ZHANG F S. The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010. Journal of Environmental Quality, 2013, 42(4): 962-971.
[19]   Ma L, Zhang W F, Ma W Q, Velthof G L, Oenema O, Zhang F S. An analysis of developments and challenges in nutrient management in China. Journal of Environmental Quality, 2013, 42(4): 951-961.
[20]   Zhang N, Bai Z, Luo J, Ledgard S, Wu Z, Ma L. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences. the Science of the Total Environment, 2017, 598: 1095-1105.
[21]   Strokal M, Ma L, Bai Z h, Luan S j, Kroeze C, Oenema O, VELTHOF G, Zhang F s. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environmental Research Letters, 2016, 11(2): article id. 024014.
[22]   Strokal M, Kroeze C, Wang M, Bai Z, Ma L. The MARINA model (Model to assess river inputs of nutrients to seAs): Model description and results for China. the Science of the Total Environment, 2016, 562: 869-888.
[23]   Oenema O, Pietrzak S. Nutrient management in food production: Achieving agronomic and environmental targets. Ambio, 2002, 31(2): 159-168.
[24]   Sims J T, Bergström L, Bowman B T, Oenema O. Nutrient management for intensive animal agriculture: policies and practices for sustainability. Soil Use and Management, 2005, 21: 141-151.
[25]   Zhang F s, Chen X p, Vitousek P. Chinese agriculture: An experiment for the world. Nature, 2013, 497(7447): 33-35.
[26]   Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, meng q f, hou p, yue s c, römheld v, Zhang F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399-6404.
[27]   Oenema O, Oudendag D, Velthof G L. Nutrient losses from manure management in the European Union. Livestock Science, 2007, 112(3): 261-272.
[28]   Herrero M, Thornton P K. Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20878-20881.
[29]   Steinfeld H, Gerber P, Wassenaar T, Castel V, rosales m, de Haan C. Livestock’s Long Shadow: Environmental Issues and Options. Food & Agriculture Organization of the United Nations, 2006.
[30]   Tittonell P, Van Wijk M T, Rufino M C, Vrugt J A, Giller K E. Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya. Agricultural Systems, 2007, 95(1/3): 76-95.
[31]   Tittonell P, Zingore S, Van Wijk M T, Corbeels M, Giller K E. Nutrient use efficiencies and crop responses to N, P and manure applications in Zimbabwean soils: Exploring management strategies across soil fertility gradients. Field Crops Research, 2007, 100(2/3): 348-368.
[32]   Tittonell P, Corbeels M, Van Wijk M T, Giller K E. FIELD—A summary simulation model of the soil-crop system to analyse long-term resource interactions and use efficiencies at farm scale. European Journal of Agronomy, 2010, 32(1): 10-21.
[33]   GranstedT A. Optimizing nitrogen management in food and energy production, and environment change. Ambio, 2002, 31(6): 496-498.
[34]   Bouwman A F, Beusen A H, Billen G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochemical Cycles, 2009, 23: doi: 10.1029/2009GB003576.
[35]   Liu J G, You L Z, Amini M, Obersteiner M, Herrero M, Zehnder A J, Yang H. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 8035-8040.
[36]   Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, RAY D K, WEST P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342.
[37]   Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, MARTINELLI L A, SEITZINGER S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.
[38]   Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change. Ambio, 2002, 31(2): 64-71.
[39]   Erisman J W, Galloway J N, Seitzinger S, Bleeker A, Dise N B, Petrescu A M R, LEACH A M, de Vries W. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130116.
[40]   Fowler D, Coyle M, Skiba U, Sutton M A, Cape J N, Reis S, sheppard l j, jenins a, grizzetti b, galloway J n, Vitousek P, LEACH A, BOUWMAN A F, BUTTERBACH-BAHL K, DENTENER F, STEVENSON D, AMANN M, VOSS M. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130164.
[41]   Bleken M A, Bakken L R. The nitrogen cost of food production: Norwegian society. Ambio, 1997, 26(3): 134-142.
[42]   Howarth R W, Boyer E W, Pabich W J, Galloway J N. Nitrogen use in the United States from 1961-2000 and potential future trends. Ambio, 2002, 31(2): 88-96.
[43]   Isermann K, Isermann R. Food production and consumption in Germany: N flows and N emissions. Nutrient Cycling in Agroecosystems, 1998, 52(2/3): 289-301.
[44]   Shindo J, Okamoto K, Kawashima H. Prediction of the environmental effects of excess nitrogen caused by increasing food demand with rapid economic growth in eastern Asian countries, 1961-2020. Ecological Modelling, 2006, 193(3/4): 703-720.
[45]   Cui S, Shi Y, Groffman P M, Schlesinger W H, Zhu Y G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2052-2057.
[46]   Gu B J, Ge Y, Ren Y, Xu B, Luo W D, Jiang H, Gu B H, Chang J. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environmental Science & Technology, 2012, 46(17): 9420-9427.
[47]   Chen M, Chen J, Sun F. Estimating nutrient releases from agriculture in China: An extended substance flow analysis framework and a modeling tool. The Science of the Total Environment, 2010, 408(21): 5123-5136.
[48]   Ti C, Pan J, Xia Y, Yan X. A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry, 2012, 108(1/3): 381-394.
[49]   Irie M, Jin Y, Li J, Yamaguchi T, Ushikubo A. Estimation of nitrogen flow change in Beijing, China, for the years 1995, 2000, and 2004. Journal of Material Cycles and Waste Management, 2014, 16(2): 245-257.
[50]   Gu B j, Dong X l, Peng C h, Luo W d, Chang J, Ge Y. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China. Environmental Pollution, 2012, 171: 30-37.
[51]   Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677.
[52]   Lemaire G, Franzluebbers A, de Faccio Carvalho P C, Dedieu B. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment,2014, 190: 4-8.
[53]   Franzluebbers A J, Lemaire G, de Faccio Carvalho P C, Sulc R M, Dedieu B. Toward agricultural sustainability through integrated crop-livestock systems. II. Production responses. European Journal of Agronomy, 2014, 57: 1-3.
[54]   Bonaudo T, Bendahan A B, Sabatier R, Ryschawy J, Bellon S, Leger F, MAGDA D, Tichit M. Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 2014, 57: 43-51.
[55]   Soussana J F, Lemaire G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 2014, 190: 9-17.
[56]   Verloop K. Limits of effective nutrient management in dairy farming: analyses of experimental farm De Marke[D]. Wageningen: Wageningen UR, 2013.
[57]   Oenema J. Transitions in nutrient management on commercial pilot farms in the Netherlands[D]. Wageningen: Wageningen UR, 2013.
[58]   Sulc R M, Tracy B F. Integrated crop-livestock systems in the U.S. corn belt. Agronomy Journal, 2007, 99(2): 335-345.
[59]   Wolf J, Rotter R, Oenema O. Nutrient emission models in environmental policy evaluation at different scales-experience from the Netherlands. Agriculture, Ecosystems & Environment, 2005, 105(1/2): 291-306.
[1] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[2] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[5] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[6] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[7] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[8] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[9] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[10] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[11] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[12] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[13] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[14] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[15] GONG ShiFei,DING WuHan,JU XueHai,XIAO NengWu,YE QingSong,HUANG Jin,LI Hu. Source Analysis and Control Strategies of Non-Point Source Pollution in Typical Agricultural Small Watershed: A Case Study of Danjiangkou Water Conservation Area [J]. Scientia Agricultura Sinica, 2021, 54(18): 3919-3931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!