Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (19): 3640-3651.doi: 10.3864/j.issn.0578-1752.2017.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping of Yield Associated Traits of Nipponbare ×Zhongjiazao 17 RIL Population

ZHANG YingZhou1,2, LUO RongJian1, SHENG ZhongHua1, JIAO GuiAi1, TANG ShaoQing1, HU PeiSong1, WEI XiangJin1   

  1. 1China National Rice Research Institute/Sate Key Laboratory of Rice Biology, Hangzhou 310006; 2College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121
  • Received:2017-03-10 Online:2017-10-01 Published:2017-10-01

Abstract: 【Objective】QTL mapping for yield traits were conducted with phenotype data collected from multi-environments, in order to identify stable QTL for yield traits and analyze the mechanism of high yield of super early indica rice Zhongjiazao 17, which will provide useful information for breeding of new varieties with higher yield and better comprehensive characteristics in rice. 【Method】A recombinant inbred lines (RILs) population derived from Nipponbare × Zhongjiazao 17 were used as experimental materials. Then a genetic linkage map was constructed by Mapmaker/EXP 3.0 based on the RILs genotypes which analyzed by polymorphism SSR markers. During 2015-2016, the RILs and two parents were grown in the experimental fields in Hangzhou, Hainan and Hangzhou. The agronomic characters including effective panicles, grain number per panicle, seed setting rate, 1 000-grain-weight, grain length, grain width and grain thickness and yield per plant were investigated. QTL mapping for these traits were detected by Windows QTL Cartographer 2.5 and environment interaction effect was detected by QTLNetwork2.2.【Result】The genetic map was constructed with 163 filtered SSR markers and covered about 1 479.4 cM with an average interval of 9.08 cM. The genotypes of male and female parent of 73.0% makers were segregated as 1﹕1; only 23.0% markers were distorted segregation which was inclined to Zhongjiazao 17. A total of 46 QTLs were mapped on all chromosomes except the 11th with the contribution rate ranged from 3.78% to 25.45%. Ten QTLs, including qEP1, qEP2, qEP4a (QTL for effective panicles), qNGPE1, qNGPE7 (for grain number per panicle), qSRT7 (for seed setting rate), qTGW2 (for 1 000-grain-weight), qGL3, qGL9 (for grain length), qGW2b (for grain width) can be detected on all three environments. The increasing effective allele of qEP4a, qNGPE1, qSRT7, qGL3, qGL9 and most QTL for grain number per panicle, seed setting rate, grain length and yield per plant come from Zhongjiazao 17. Furthermore, some QTLs about different traits exist as clusters on chromosome 1, 2, 7, respectively. Six yield associated traits QTL were also found can significantly interact with environment. 【Conclusion】 The linkage map of RIL derived from Nipponbare × Zhongjiazao 17 has abundant polymorphic makers which cover 93.64% of the rice whole genome, so it is very suitable for QTL mapping for important agronomic traits. Many stable QTLs about rice yield traits were detected using this mapping population, and among them, the alleles which can increase yield of many QTL of grain number per panicle, seed setting rate, grain length and yield per plant were from Zhongjiazao 17. The results were consistent with that the most of these yield traits of Zhongjiazao 17 were better than Nipponbare. These increasing effective alleles of yield associated traits QTL may be the genetic basis of stable high yield of Zhongjiazao 17.

Key words: rice, yield associated traits, QTL, RILs population, Zhongjiazao 17

[1]    戴农. 水稻生产机械化发展现状、问题与思考. 现代农业装备, 2014(1):16-20.
DAI N. The status, problems and thinking in rice production mechanization. Modern Agricultural Equipment, 2014(1):16-20. (in Chinese)
[2]    方福平, 程式华. 论中国水稻生产能力. 中国水稻科学, 2009, 23(6): 539-566.
Fang F P, CHENG S H. Rice production capacity in China. Chinese Journal of Rice Science, 2009, 23(6): 539-566. (in Chinese)
[3]    苏相文, 高方远, 曹墨菊, 任鄄胜, 陆贤军, 吴贤婷, 刘光春, 任光俊. 利用重组自交系剖析大穗型香稻保持系川香29B产量相关性状的遗传基础. 分子植物育种, 2015, 13(1): 39-50.
Su X W, Gao F Y, Cao M J, REN J S, LU X J, WU X T, LIU G C, REN G J. Genetic basis of the traits related to yield in rice maintainer line Chuan-xiang 29B with large panicle and aroma using recombinant inbred lines. Molecular Plant Breeding, 2015, 13(1): 39-50.
[4]    Ikeda M, Kitano H, Matsuoka M. Yield. Genetics and Genomics of Rice. Springer New York, 2013: 227-235.
[5]    Huang R, Jiang L, Zheng J, ZHENG J H, WANG T S, WANG H C, HUANG Y, HONG Z L. Genetic bases of rice grain shape: so many genetics, so little known. Trends in Plant Science, 2013, 18(4): 218-226.
[6]    Zhu Y B, Guo Y C, Liang K J, SUN X L. Progress on the genes controlling grain shape of rice. Journal of Fujian Agriculture & Forestry University, 2015, 44(1): 1-7.
[7]    Ashikari M, Sakakibara H, Lin S, YAMAMOTO T, TAKASHI T, NISHIMURA A, ANGELES E R, QIAN Q, KITANO H, MATSUOKA M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
[8]    Yoshida A, Sasao M, Yasuno N, TAKAGI K, DAIMON Y, CHEN R H, YAMAZAKI R, TOKUNAGA H, KITAGUCHI Y, SATO Y, NAGAMURA Y, USHIJIMA T, KUMAMARU T, LIDA S, MAEKAWA M, KYOZUKA K. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 767.
[9]    Huang X Z, Qian Q, Liu Z G, SUN H Y, HE S Y, LUO D, XIA G G, CHU C G, LI J Y, FU X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494.
[10]   Jiao Y Q, Wang Y H, XUE D W, WANG J, YAN M X, LIU G F, DONG G J, ZENG D L, LU Z F, ZHU X D, QIAN Q, LI J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544.
[11]   Xue W Y, Xing Y Z, Weng X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761.
[12]   Wei X J, Xu J F, Guo H N, JIANG L, CHENG S H, YU C Y, ZHOU Z L, HU P S, ZHAI H Q, WAN J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential stimultaneously. Plant Physiology, 2010, 153(4): 1747-1758.
[13]   Song X J, Huang W, Shi M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623.
[14]   Shomura A, Izawa T, Ebana K, ENBITANI T, KANEGAE H, KONISHI H, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.
[15]   Chin J H, Chu S H, Jiang W, CHO Y, BASYIRIN R, DARSHAN S, KOH H. Identification of QTLs for hybrid fertility in inter-subspecific crosses of rice (Oryza sativa, L.). Genes & Genomics, 2011, 33(1): 39-48.
[16]   Mao H L, Sun S G, Yao J L, WANG C J, YU S B, XU C G, LI X G, ZHANG Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584.
[17]   Li Y B, Fan C C, Xing Y, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI C J, XIAO J H, HE Y Q, ZHANG Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12): 1266-1269.
[18]   Sun L J, Li X J, Fu Y G, ZHU Z F, TAN L B, LIU F X, SUN X Y, SUN X W, XUN C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Chinese Bulletin of Botany, 2013, 55(10): 938-949.  
[19]   Wang S K, Wu K, Yuan Q B, LIU X Y, LIU Z G, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950.
[20]   Ishimaru K, Hirotsu N, Madoka Y, MURAKAMI N, HARE N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B,ONISHI A, MIYAGAWA H, KATOH E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013, 45(6): 707.
[21]   Qi P, Lin Y S, Song X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG M Z, JIANG L W, GAO J P, LIN H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22(12): 1666-1680.
[22]   Wang Y X, Xiong G S, Hu J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature genetics, 2015, 47(8): 944-948.
[23]   李金路, 王硕, 于婧, 王玲, 周世良. 一种改良的植物DNA提取方法. 植物学报, 2013, 48(1): 72-78.
Li J L, Wang S, YU J, WANG L, ZHOU S L. A modified method for extracting plant DNA. Chinese Bulletin of Botany, 2013, 48(1): 72-78. (in Chinese)
[24]   Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. 1992.
[25]   Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical and Applied Genetics, 2001, 102(1): 41-52.
[26]   Wang S, Basten C J, Zeng Z B. Windows QTL cartographer 2.5 department of statistics. Raleigh, USA: North Carolina State University, 2006.
[27]   Blair M W, Panaud O, McCouch S R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1999, 98(5): 780-792.
[28]   Yang J, Hu C C, Ye X Z, YU R D, XIA Z, YE X Z, ZHU J. QTLNetwork-2.1 user manual. Hangzhou: Zhejiang University, 2005.
[29]   董少玲, 张颖慧, 张亚东, 陈涛, 赵庆勇, 朱镇, 周慧丽, 姚姝, 赵凌, 王才琳. 水稻重组自交系分子遗传图谱构建及分蘖角的 QTL检测. 江苏农业学报, 2012, 28(2): 10-16.
Dong S L, Zhang Y L, Zhang Y D, CHEN T, ZHAO Q Y, ZHU Z, ZHOU H L, YAO S, ZHAO L, WANG C L. Construction of molecular genetic linkage map based on a rice RIL populations and detection of QTL for tiller angle. Jiangsu Journal of Agricultural Sciences, 2012, 28(2): 10-16. (in Chinese)
[30]   沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴明伟, 程式华. 超级杂交稻协优 9308 重组自交系的分子遗传图谱构建. 分子植物育种, 2008, 6(5): 861-866.
Shen X H, Chen S G, Cao L Y, zhan x d, chen d b, wu m w, chenG s h. Construction of genetic linkage map based on RIL population derived from super hybrid rice XY9308. Molecular Plant Breeding, 2008, 6(5): 861-866. (in Chinese)
[31]   徐小飒, 刘喜, 赵志刚, 周裕军, 吴盛阳, 周蓉, 张俊杰, 江玲, 万建民. 培矮64S/93- 11重组自交系分子图谱构建及千粒重QTL检测. 南京农业大学学报, 2011, 34(1): 8-13.  
Xu X S, Liu X, Zhao Z G, ZHOU Y J, WU S Y, ZHOU R, ZHANG J J, JIANG L, WAN J M. Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S / 93- 11 and detection of QTL for 1000-grain weight. Journal of Nanjing Agricultural University, 2011, 34(1): 8-13. (in Chinese)
[32]   Zhang L, Wang S, Li H, DENG Q M, ZHENG A P, LI S C, LI P, LI Z L, WANG J K. Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theoretical and Applied Genetics, 2010, 121(6): 1071-1082. 
[33]   Guo S, Xu Y, Liu H, MAO Z, ZHANG C. MA Y, ZHANG q, chong k. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 2013, 4: 1566-1577.
[34] 占小登, 于萍, 林泽川, 陈代波, 沈希宏, 张迎信, 付君林, 程式华, 曹立勇. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状 QTL. 中国水稻科学, 2014, 28(6): 570-580.
Zhan X D, Yu P, Lin Z C, CHEN D B, SHEN X H, ZHANG Y X, FU J L, CHENG S H, CAO L Y. QTL mapping of heading date and yield-related traits in rice using recombination inbred lines (RILs) population derived from BG1/XJL. Chinese Journal of Rice Science, 2014, 28(6): 570-580. (in Chinese)
[35]   Chen J H. Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2014, 127(11): 2515-2524.
[36]   Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics, 1997, 95(7): 1025-1032.
[37]   HEANG D, SASSA H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS ONE, 2012, 7(2): e31325.
[38]   Nakagawa H, Mori M. Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiology, 2012, 158(3): 1208.
[39]   赵建国, 蒋开锋, 杨莉, 杨乾华, 万先奇, 曹应江, 游书梅, 罗婧, 张涛. 水稻产量相关性状 QTL定位. 中国水稻科学, 2013, 27(4): 344-352.
Zhao J G, Jiang K F, Yang L, Yang Q H, WAN X Q, CAO Y J, YOU S M, LUO Q, ZHANG T. QTL mapping for yield related components in a RIL population of rice. Chinese Journal of Rice Science, 2013, 27(4): 344-352. (in Chinese)
[40]   杨占烈, 戴高兴, 翟荣荣, 林泽川, 王会民, 曹利用, 程式华. 多环境条件下超级杂交稻协优9308重组自交系群体粒形性状的 QTL分析. 中国水稻科学, 2013, 27(5): 482-490.
Yang Z L, Dai G X, ZHAI R R, LIN Z C, WANG H M, CAI L Y, CHENG S H. QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice 9308 in multi-environments. Chinese Journal of Rice Science, 2013, 27(5): 482-490. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[10] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[11] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[12] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!