Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4677-4689.doi: 10.3864/j.issn.0578-1752.2018.24.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influence of Long-term Fertilization on Community Structures and Colonization of Arbuscular mycorrhizal Fungi in a Brown Soil

GUO Jing(),LUO PeiYu(),YANG JinFeng,LI DongDong,HUANG YueYue,HAN XiaoRi()   

  1. College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2018-04-16 Accepted:2018-07-10 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】AM (Arbuscular mycorrhizal) fungi plays important roles like improving the rhizosphere soil environment, promoting the uptake of nutrients by plants, enhancing resistance of plant, and increasing crop yield and quality. This study aimed to explore changes of community structures and colonization rate of AM fungi and to find out the main factors which affected the changes under a corn-soybean rotation system and a long-term fertilization for 38 years in a brown soil. 【Method】 Soil samples (0-20 cm) were taken from the six treatments of the long-term fertilization experiment in June 2016, including (1) no fertilizer (CK); (2) chemical N input (N); (3) chemical N and P input (NP); (4) chemical N, P and K input (NPK); (5) pig manure (M); (6) pig manure, chemical N and P (MNP). Then the soil samples were analyzed by using PCR-DGGE, gel-recovery, sequencing and trypan blue staining. Relationship between community and colonization rate of AM fungi and environmental factors were analyzed by Redundancy analysis and Canonical Correlation analysis. 【Result】 The result showed that the contents of alkali-hydrolysable nitrogen (AHN), available phosphorus (AP), available potassium (AK) , ammonium nitrogen (NH4 +-N), nitric nitrogen (NO3 --N) and dissolved organic carbon (DOC) under organic fertilization treatments were significantly higher than them under the CK treatment and chemical fertilization treatments, and the trend was: organic fertilizer treatments > chemical fertilizer treatments > CK treatment. Compared with the CK treatment, soil pH was decreased in chemical fertilizer treatments and increased in organic fertilizer treatments. 22 bands of AM fungi from soil and 9 bands of AM fungi from root were obtained by gel-recovery, and 13 OTU were obtained by BLAST. The result of sequencing showed that AM fungi species isolated from soil samples were mainly Glomeromycota and Gigasporaceae, while infected AM fungi was only Glomeromycota. The cluster analysis showed that community structures of soil AM fungi were divided into three groups under a long-term fertilization in a brown soil, namely N treatment, organic fertilizer treatments and another fertilizer treatments. Community structures of infected AM fungi were also divided into three groups, namely NPK treatment, M treatment and NP treatment, and another fertilizer treatments. The spore density of AM fungi under organic fertilizer treatments was significantly higher than that under chemical fertilizer treatments and non-fertilizer treatment, and the trend was: organic fertilizer treatments > chemical fertilizer treatments > CK treatment. The trend of colonization rate of AM fungi under different fertilizer treatments was: NPK treatment > organic fertilizer treatments > another fertilizer treatments. Redundancy analysis showed that spore density was positively correlated with soil AHN, NH4 +-N, AP, AK, DOC and soil moisture content, and colonization rate was positively correlated with nitric nitrogen content. The colonization rate was positively correlated with spore density, while diversity index of AM fungi was neither correlation with colonization rate nor with spore density. Canonical Correlation analysis showed AHN, AK, DOC and NH4 +-N significantly influenced the ribotypes of AM fungi. 【Conclusion】 The long-term fertilization changed community structures of AM fungi by changing the physicochemical properties of the soil, and then affected colonization of AM fungi.

Key words: Arbuscular mycorrhizal fungi, brown soil, long-term fertilization, community structure, colonization rate

Table 1

PCR conditions of AM fungi"

引物名称Primer 引物序列(5′-3′)Primer sequence(5′-3′) 反应条件Conditions
NS1 GTAGTCATATGCTTGTCTC 94℃预变性3 min;94℃ 1 min,50 ℃ 1 min,72 ℃ 1 min,30个循环;72 ℃ 7 min (一轮)
An initial denaturation of 94℃for 3 min; 94℃ 1 min, 50℃ 1 min, 72℃ 1 min, 30 cycles; 72℃ 7 min (The first round)
NS41 CCCGTGTTGAGTCAAATTA
GC-NS31 TTGGAGGGCAAGTCTGGTGCC
AM1 GTTTCCCGTAAGGCGCCGAA 94 ℃预变性3 min;94 ℃ 30 s,58 ℃ 45 s,72 ℃ 45 s,28个循环;72 ℃ 7 min(二轮)
An initial denaturation of 94℃ for 3 min; 94℃ 30 s, 58℃ 45 s, 72℃ 45 s, 28 cycles; 72℃ 7 min (The second round)
GC-ARCH1311 TGCTAAATAGCCAGGCTGY
NS8 TCCGCAGGTTCACCTACGGA

Table 2

Physical and chemical properties of test soils"

处理
Treatment
pH
(H2O)
速效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
碱解氮
AHN (mg·kg-1)
硝态氮
NO3--N (mg·kg-1)
铵态氮
NH4+-N (mg·kg-1)
可溶性有机碳
DOC (mg·kg-1)
土壤含水量
SM (%)
CK 5.75±0.01b 1.19±0.64d 96.66±1.21c 85.04±0.68f 12.06±0.02e 3.97±0.18d 39.42±0.26e 15.40±0.14b
N 4.87±0.00d 2.14±0.64d 81.62±1.86c 110.43±0.94d 48.38±1.03c 4.45±0.12cd 65.41±0.05d 15.41±0.22b
NP 5.35±0.01c 16.15±0.22c 76.94±2.32c 96.60±1.17e 51.22±1.39bc 4.83±0.16bc 71.29±0.74c 15.12±0.38b
NPK 4.99±0.01c 17.10±0.63c 107.02±1.16c 120.73±2.43c 55.97±0.74b 5.26±0.046b 73.10±0.17c 15.80±0.04b
M 6.64±0.06a 137.72±2.29b 209.96±9.98b 132.54±1.74b 41.81±0.75d 5.33±0.09b 108.44±2.51b 18.11±0.04a
MNP 5.78±0.02b 182.15±7.01a 268.12±9.75a 165.56±2.24a 73.63±0.43a 7.75±0.12a 126.45±1.30a 18.20±0.73a

Fig. 1

DGGE banding patterns of soil AM fungi under different fertilizer treatments"

Fig. 2

DGGE banding patterns of infected AM fungi under different fertilizer treatments"

Table 3

The diversity index of soil AM fungi under different fertilizer treatments"

处理
Treatment
香农指数
Shannon-Wiener(H)
均匀度
Evenness (E)
条带数
Bands
CK 2.04±0.01c 0.982±0.00a 8
N 1.93±0.01d 0.988±0.01a 7
NP 2.18±0.02a 0.991±0.01a 9
NPK 1.78±0.03e 0.997±0.02a 6
M 2.09±0.05b 0.999±0.01a 8
MNP 1.78±0.02e 0.995±0.01a 6

Table 4

The diversity index of infected AM fungi in different fertilizer treatments"

处理
Treatment
香农指数
Shannon-Wiener(H)
均匀度
Evenness(E)
条带数
Bands
CK 0.88±0.06c 0.799±0.02b 3
N 1.03±0.09c 0.740±0.01b 4
NP 1.91±0.03a 0.981±0.01a 7
NPK 1.92±0.02a 0.985±0.01a 7
M 1.91±0.01a 0.984±0.01a 7
MNP 1.36±0.01b 0.988±0.01a 4

Fig. 3

Phylogenetic tree of AM fungi with different fertilizer treatments"

Fig. 4

The spore density of AM fungi under different fertilizer treatments"

Fig. 5

The colonization rate of AM fungi under different fertilizer treatments"

Fig. 6

UPGMA dendrogram of soil AM fungi under different fertilizer treatments"

Fig. 7

UPGMA dendrogram of infected AM fungi under different fertilizer treatments"

Fig. 8

Redundancy analysis depicting the relationship among soil physicochemical properties and AM fungi"

Fig. 9

Canonical Correlation analysis depicting the relationship among AM fungi ribotypes and physicochemical properties"

[1] 杨凤铃, 赵方贵, 刘洪庆, 刘新 . 不同烟草栽培地区土壤理化性质与AM真菌分布关系. 中国农学通报, 2011,27(1):116-120.
YANG F L, ZHAO F G, LIU H Q, LIU X . Relationships between physical and chemical properties of different tobacco cultivation soils and distribution of AM Fungi. Chinese Agricultural Science Bulletin, 2011,7(1):116-120. (in Chinese)
[2] 黄京华, 曾任森, 骆世明 . AM 菌根真菌诱导对提高玉米纹枯病抗性的初步研究. 中国生态农业学报, 2006,14(3):167-169.
HUANG J H, ZENG R S, LUO S M . Studies on disease resistance of maize toward sheath blight induced by arbuscular mycorrhizal fungi. Chinese Journal of Eco-Agriculture, 2006,14(3):167-169. (in Chinese)
[3] GUPTA M L, PRASAD A, RAM M, KUMAR S . Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum, on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint(Mentha arvensis ) under field conditions. Bioresource Technology, 2002,81(1):77-79.
[4] 冯海艳, 冯固, 宋建兰, 王敬国, 李晓林 . 丛枝菌根真菌根内菌丝碱性磷酸酶活性与菌根共生效应的研究. 中国生态农业学报, 2004,12(2):124-127.
FENG H Y, FENG G, SONG J L, WANG J G, LI X L . Studies on the relationship between the activity of alkaline phosphatase in intraradical hyphae of arbuscular mycorrhizae fungi and efficiency of mycorrhizal symbiosis. Chinese Journal of Eco-Agriculture, 2004,12(2):124-127. (in Chinese)
[5] 刘翠花, 陈保冬, 朱永官, 张澈 . 丛枝菌根真菌对青稞生长发育及磷营养的影响研究. 土壤学报, 2006,43(6):1052-1055.
LIU C H, CHEN B D, ZHU Y G, ZHANG C . Effects on arbuscular mycorrhizal fungi on growth and phosphorus nutrition of Highland Barley. Acta Pedologica Sinica, 2006,43(6):1052-1055. (in Chinese)
[6] 张燕, 李娟, 姚青, 陈杰忠, 胡又厘 . 枇杷质膜水孔蛋白基因EjPIP1的克隆及AM真菌对其表达的影响. 中国农业科学, 2014,47(7):1387-1396.
ZHANG Y, LI J, YAO Q, CHEN J Z, HU Y L . Cloning of a plasma membrane aquaporin gene EjPIP1 in Eriobotrya japonica leaves and its expression analysis after AM fungi inoculation. Scientia Agricultura Sinica, 2014,47(7):1387-1396. (in Chinese)
[7] GOSLING P, HODGE A, GOODLASS G, BENDING G D . Arbuscular mycorrhizal fungi and organic farming. Agriculture Ecosystems & Environment, 2005,113(1):17-35.
[8] DIAZ G, ROLDAN A, ALBALADEJO J . Soil type as affecting colonization patterns and mycorrhizal symbiosis effectiveness of 6 glomus species. Cryptogamie Mycologie, 1992,13(1):47-56.
[9] 张海波, 梁月明, 冯书珍, 赵紫薇, 苏以荣, 何寻阳 . 土壤类型和树种对根际土丛枝菌根真菌群落及其根系侵染率的影响. 农业现代化研究 , 2016,37(1):187-194.
ZHANG H B, LIANG Y M, FENG S Z, ZHAO Z W, SU Y R, HE X Y . The effects of soil types and plant species on arbuscular mycorrhizal fungi community and colonization in the rhizosphere. Research of Agricultural Modernization, 2016,37(1):187-194. (in Chinese)
[10] 闫飞扬, 段廷玉, 张峰 . 农业管理措施对AM真菌功能影响的研究进展. 草业科学, 2014,31(12):2230-2241.
YAN F Y, DUAN T Y, ZHANG F . Effects of agricultural managements on the function of arbuscular mycorrhizal fungi. Pratacultural Science, 2014,31(12):2230-2241. (in Chinese)
[11] 田慧, 盖京苹, 李晓林, 张俊伶 . 农田土著丛枝菌根真菌群落特征和磷吸收作用研究进展. 土壤通报, 2013,44(6):1512-1519.
TIAN H, GAI J P, LI X L, ZHANG J L . Community composition and phosphorus uptake by indigenous arbuscular mycorrhizal fungi in agroecosystems. Chinese Journal of Soil Science, 2013,44(6):1512-1519. (in Chinese)
[12] 秀彦华, 刘润进, 李敏 . 自然入侵条件下黄顶菊丛枝菌根定殖及发育的研究. 菌物学报, 2015,34(1):82-90.
XIU Y H, LIU R J, LI M . Arbuscular mycorrhizal colonization and development of Flaveria bidentis under natural invasive conditions. Mycosystema, 2015,34(1):82-90. (in Chinese)
[13] 高秀兵, 陈娟, 赵华富, 李珍, 郭灿, 周富裕, 王振轩, 涂逸洋, 周玉峰 . 贵州地方种茶树根系丛枝菌根真菌的侵染特征. 西南农业学报, 2016,6(29):1328-1335.
GAO X B, CHEN J, ZHAO H F, LI Z, GUO C, ZHOU F Y, WANG Z X, TU Y Y, ZHOU Y F . Colonization characteristics of arbuscular mycorrhiza fungi in rhizosphere of local tea trees in Guizhou. Southwest China Journal of Agricultural Sciences, 2016,6(29):1328-1335. (in Chinese)
[14] WU F, DONG M, LIU Y, MA X, AN L ,YOUNG J P W. Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant and Soil, 2011,342(1/2):233-247.
doi: 10.1007/s11104-010-0688-4
[15] 张鑫, 裴宗平, 孙干, 苏雪鹏 . 紫花苜蓿根际丛枝菌根真菌与土壤理化性质的相关性研究.北方园艺, 2016(13):172-177.
ZHANG X, PEI Z P, SUN G, Su X P . Correlation between physicochemical properties of rhizosphere soil and arbuscula mycorrhizae fungi inMedicago sativa l.Grassland. Northern Horticulture, 2016(13):172-177. (in Chinese)
[16] JONER E J . The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biology and Fertility of Soils, 2000,32(5):435-440.
doi: 10.1007/s003740000279
[17] 贾锐, 杨秀丽, 闫伟 . 兴安杜鹃菌根形态特征和土壤理化性质的关系研究. 内蒙古农业大学学报, 2011,32(3):63-66.
JIA Y, YANG X L, YAN W . Study on the relationship between morphology and soil properties mycorrhizal fungi of rhododendron dauricum. Journal of Inner Mongolia Agricultural University, 2011,32(3):63-66. (in Chinese)
[18] MUCHANE M N, JAMA B, OTHIENO C, OKALEBO R, ODEE D, MACHUA J . Influence of improved fallow systems and phosphorus application on arbuscular mycorrhizal fungi symbiosis in maize grown in western Kenya. Agroforestry Systems, 2010,78(2):139-150.
doi: 10.1007/s10457-009-9249-3
[19] 罗培宇, 樊耀, 杨劲峰, 葛银凤, 蔡芳芳, 韩晓日 . 长期施肥对棕壤氨氧化细菌和古菌丰度的影响. 植物营养与肥料学报, 2017,23(3):678-685.
LUO P Y, FAN Y, YANG J F, GE Y F, CAI F F, HAN X R . Influence of long-term fertilization on abundance of ammonia oxidizing bacteria and archaea in brown soil. Journal of Plant Nutrition and Fertilizer, 2017,23(3):678-685. (in Chinese)
[20] TU C L, LIU C Q, LU X H, YUAN J, LANG Y C . Sources of dissolved organic carbon in forest soils: evidences from the differences of organic carbon concentration and isotope composition studies. Environmental Earth Sciences, 2011,63(4):723-730.
doi: 10.1007/s12665-010-0741-x
[21] 鲍士旦 .土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 39-109.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 39-109. (in Chinese)
[22] HENDRIX J W, HERSHMAN D E, HENSON G T . Evaluation of the "most probable number" (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia, 1990,82(5):576-581.
doi: 10.2307/3760048
[23] 盛萍萍, 刘润进, 李敏 . 丛枝菌根观察与侵染率测定方法的比较. 菌物学报, 2011,30(4):519-525.
SHENG P P, LIU R J, LI M . Methodological comparison of observation and colonization measurement of arbuscular mycorrhizal fungi. Mycosystema, 2011,30(4):519-525. (in Chinese)
[24] RENKER C, HEINRICHS J, KALDORF M, BUSCOT F . Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza, 2003,13(4):191-198.
doi: 10.1007/s00572-002-0214-5 pmid: 12938031
[25] HARLEY J L, SMITH S E . Mycorrhizal symbiosis. Quarterly Review of Biology, 2008,3(3):273-281.
[26] 李登武, 贺学礼, 余仲东 . 施钾量与AM真菌接种效应的关系. 西北植物学报, 2002,22(4):889-893.
LI D W, HE X L, YU Z D . Amount of potassium application in relation to AM fungus inoculation efficiency. Acta Botanica Boreali-occidentalia Sinica, 2002,22(4):889-893. (in Chinese)
[27] 程俐陶, 郭巧生, 刘作易 . 半夏丛枝菌根真菌侵染模式及侵染率动态变化. 贵州农业科学, 2009,37(2):37-39.
CHEN L T, GUO Q S, LIU Z Y . Infection pattern and dynamic change of arbuscular mycorrhizal fungi in Pinellia ternate. Guizhou Agricultural Sciences, 2009,37(2):37-39. (in Chinese)
[28] BHADALUNG N N, SUWANARIT A, DELL B, NOPAMORNBODI O ,THAMCHAIPENET A.AND RUNGCHUANG J. Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant and Soil, 2005,270(1):371-382.
doi: 10.1007/s11104-004-1829-4
[29] 胡从从, 郭清华, 贺学礼, 赵丽莉, 李英鹏, 曹翠兰 . 蒙古沙冬青伴生植物AM真菌多样性. 西北农业学报, 2016,25(6):921-932.
HU C C, GUO Q H, HE X L, ZAHO L L, LIN Y P, CAO C L . Diversity of arbuscular mycorrhiza fungi near to the associated plants of Ammopiptanthus mongolicus. Acta Agriculturae Boreali-occidentalis Sinica, 2016,25(6):921-932. (in Chinese)
[30] 胡静, 罗充, 吴涛 . 刺梨丛枝菌根真菌的侵染特征及其种类鉴定. 贵州农业科学, 2015,43(9):82-86.
HU J, LUO C, WU T . Infection characteristics and species identification of arbuscular mycorrhizal fungi in the rhizosphere of Rosa roxburghii Tratt. Guizhou Agricultural Sciences, 2015,43(9):82-86. (in Chinese)
[31] 王茜, 王强, 王晓娟, 熊友才, 祝英, 张亮, 金樑 . 不同AM真菌对玉米生长的促生效应. 兰州大学学报, 2015,51(4):558-563.
WANG Q, WANG Q, WANG Q J, XIONG Y C, ZHU Y, ZHANG L, JIN L . Effects of various AM fungi on the growth of corn(Zea mays). Journal of Lanzhou University, 2015,51(4):558-563. (in Chinese)
[32] SMITH S E , READ D J . Mycorrhizal Symbiosis. New York: Academic Press, 2010: 11-188.
[34] ELLOUZE W, HAMEL C, CRUZ A F, ISHII T, GAN Y, BOUZID S . Phytochemicals and spore germination: At the root of AMF host preference? Applied Soil Ecology, 2012,60(4):98-104.
doi: 10.1016/j.apsoil.2012.02.004
[33] 邓小军, 周国英, 刘君昂, 李琳, 布婷婷 . 湖南油茶林丛枝菌根真菌多样性及其群落结构特征. 中国林业科技大学学报, 2011,31(10):38-42.
DENG X J, ZHOU G Y, LIU J A, LI L, BU T T . Diversity and community structure of arbuscular mycorrhizal fungi in Camellia oleifera stands in Hunan. Journal of Central South University of Forestry & Technology, 2011,31(10):38-42. (in Chinese)
[34] GUAA Y , LINDSTRÖM K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 2009,45(3):239-246.
[35] 冯固, 杨茂秋, 白灯莎, 黄全生 . VA 菌根真菌对棉花磷素吸收及生长的效应. 西北农业学报, 1994,3(2):75-80.
FENG G, YANG M Q, BAI D S, Huang Q S . Effect of inoculating with vescular-arbuscular mycorrgizal fungi on the p nutrient and growth of cotton. Acta Agriculturae Boreali-Occidentalis Sinica, 1994,3(2):75-80. (in Chinese)
[36] 李伟, 孙龙燕, 张翠萍, 徐萌, 郭绍霞 . 濒危植物崂山百合根围AM真菌分布特征. 东北农业大学学报, 2016,47(1):30-37.
LI W, SUN L Y, ZHANG C P, XU M, GUO S X . Distribution characteristic of arbuscular mycorrhizal fungi in the rhizosphere of endangered Lilium tsingtauense plants. Journal of Northeast Agricultural University, 2016,47(1):30-37. (in Chinese)
[37] 张俊英, 王敬国, 许永利, 李海港 . 氮素对不同大豆品种根系分泌物中有机酸的影响. 植物营养与肥料学报, 2007,13(3):398-403.
ZHANG J Y, WANG J G, XU R L, LI H G . Effect of nitrogen on the species and contents of organic acids in root exudates of different soybean cultivars. Plant Nutrition and Fertilizer Science, 2007,13(3):398-403. (in Chinese)
[38] AKIYAMA K, MATSUZAKI K, HAYASHI H . Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005,435(7043):824-827.
doi: 10.1038/nature03608 pmid: 15944706
[39] 肖艳萍, 李涛, 费洪运, 赵之伟 . 云南金顶铅锌矿区丛枝菌根真菌多样性的研究. 菌物学报, 2008,27(5):652-662.
XIAO Y P, LI T, FEI H T, ZHAO Z W . Species diversity of arbuscular mycorrizal fungi in Jinding Pb-Zn mining area of Lanping, Yunnan. Mycosystema, 2008,27(5):652-662. (in Chinese)
[40] CAMARGO-RICALDE S L, DHILLION S S . Endemic Mimosa species can serve as mycorrhizal "resource isands" within semiarid communities of the Tehuacan-Cuicatlan Valley, Mexico. Mycorrhiza, 2003,13(3):129-136.
doi: 10.1007/s00572-002-0206-5 pmid: 12836080
[41] KENNEDY L J.TILLER R L, STUTZ J C . Associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid South- western North America. Journal of Arid Environment, 2002,50(3):459-475.
[42] 邬奇峰, 陆扣萍, 毛霞丽, 秦华, 王海龙 . 长期不同施肥对农田土壤养分与微生物群落结构的影响. 中国农学通报, 2015,31(5):150-156.
WU Q F, LU K P, MAO X L, QIN H, WANG H L . Responses of soil nutrients and microbial biomass and community composition to long-term fertilization in cultivated land. Chinese Agricultural Science Bulletin, 2015,31(5):150-156. (in Chinese)
[43] MATHIMARAN N, RUH R, VULLIOUD P, FROSSARD E, JANSA J . Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza, 2005,16(1):61-66.
doi: 10.1007/s00572-005-0014-9 pmid: 16133255
[44] BLANKE V, RENKER C, WAGNER M, FILLNER K, HELD M, KUHN A J, BUSCOT F . Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate- polluted field site. New Phytologist, 2005,166(3):981-992.
[45] 刘权钢, 金东淳, 刘敬爱 . DGGE技术在土壤微生物多样性分析上的研究进展. 延边大学农学学报, 2012,34(2):170-176.
LI Q G, JIN D C, LIU J A . Research progress of DGGE technique for soil microbial diversity analysis. Journal of Agricultural Science Yanbian University, 2012,34(2):170-176. (in Chinese)
[46] 林先贵, 胡君利, 戴珏, 王发园, 冯有智 . 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较. 应用与环境生物学报, 2017,23(2):343-350.
LI X G, HU G L, DAI Y, WANG F Y, FNG Y Z . Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi. Chinese Journal of Applied and Environmental Biology, 2017,23(2):343-350. (in Chinese)
[1] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[2] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[3] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[4] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[5] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[6] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[7] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[8] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[9] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[10] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[11] WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240.
[12] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[13] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[14] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[15] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!