Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (17): 3315-3324.doi: 10.3864/j.issn.0578-1752.2018.17.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influence of Long-Term Nitrogen and Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi Community in Mollisols of Northeast China

WANG QingFeng1,2, JIANG Xin1,2, MA MingChao1,2, GUAN DaWei1,2, ZHAO BaiSuo2, WEI Dan3CAO FengMing1,2, LI Li1,2, LI Jun1,2   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 1000812 &Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing 1000813 Institute of Soil Fertility and Environmental Sources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086Laboratory of Quality
  • Received:2017-12-14 Online:2018-09-01 Published:2018-09-01

Abstract: 【Objective】Arbuscular mycorrhizal (AM) fungi, which form symbiotic relationships with the majority of land plants, can provide plants with critical nutrients, act as protectants against phytopathogens, and help plants withstand stresses. In order to clarify the effects of different doses of nitrogen (N) and phosphorus (P) fertilization on the community composition and reveal the main driving factors of AM fungi, a long-term fertilizer experiment (37-year) was set up in mollisols of northeast China. This study would provide evidence for further enhancing fertilization and using AM fungi to increase availability of soil nutrients for plants.【Method】Base on a long-term fertilization field experiment, Illumina MiSeq platform were used to analyze the effects of different N and P fertilization on AM fungal community. The soil samples were collected and analyzed from five fertilization regimes: No fertilizer (CK), normal N fertilizer (N1), normal N plus normal P fertilizers (N1P1), duple N fertilizer (N2), and duple N plus duple P fertilizers (N2P2). A correlation analysis was used to reveal the main important factors for determining the AM fungal community composition. 【Result】 Long-term N and P fertilization decreased soil pH and available K, however, which increased total N, KCl-extractable NO3- and NH4+, and organic matter. N-fertilization (N1 and N2) did not significantly change soil AMF diversity (P>0.05), while N- plus P-fertilization (N1P1 and N2P2) decreased it compared with CK (P<0.05). Glomeraceae was the most abundant family in soils, accounting for 45.5% of all AM fungi. In genus level, all fertilization decreased the relative abundance of Funneliformis and Septoglomus, whereas increased Paraglomus;N- plus P-fertilization increased the relative abundance of Glomus and Funneliformis, but decreased Gigaspora and Paraglomus. Nonmetric Multidimensional Scaling analyzed result showed that the community composition in no fertilization, N fertilization, and N- plus P-fertilization was significantly different with each other. And a redundancy analysis indicated that soil pH, concentration of available P were the main environment factors (P<0.05) affecting the AM fungal community variation. 【Conclusion】 Our research demonstrated that long-term fertilization changed soil AM fungal community composition in mollisols. N-fertilization did not change AM fungal diversity while N- plus P-fertilization decreased it. It was concluded that soil pH and available P concentration were the main factors affecting AM fungal community variation.

Key words: long-term fertilization, mollisols, AMF, microbial community composition, Illumina Miseq

[1]    Zhou J, Guan D, Zhou B, Zhao B, Ma M, Qin J, Jiang X, Chen S, Cao F, Shen D. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology & Biochemistry,2015, 90: 42-51.
[2]    Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology,2011, 62(1): 227-250.
[3]    Kohler J, Hernández J A, Caravaca F, Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology,2008, 35(2): 141-151.
[4]    张中峰, 张金池, 黄玉清, 杨慧, 罗亚进, 罗艾滢. 丛枝菌根真菌对植物耐旱性的影响研究进展. 生态学杂志, 2013, 32(6): 1607-1612.
Zhang Z F, Zhang J C, Huang Y Q, Yang H, Luo Y J, Luo A Y. Effects of arbuscular mycorrhizal fungi on plant drought tolerance: Research progress. Chinese Journal of Ecology, 2013, 32(6): 1607-1612. (in Chinese)
[5]    向丹, 徐天乐, 李欢, 陈保冬. 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 2017, 37(11): 3597-3606.
Xiang D, Xu T L, Li H, Chen B D. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinica, 2017, 37(11): 3597-3606. (in Chinese)
[6]    张中峰, 张金池, 黄玉清, 徐广平, 张德楠, 俞元春. 接种菌根真菌对青冈栎幼苗耐旱性的影响. 生态学报, 2016, 36(11): 3402-3410.
Zhang Z F, Zhang J C, Huang Y Q, Xu G P, Zhang D N, Yu Y C. Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings. Acta Ecologica Sinica, 2016, 36(11): 3402-3410. (in Chinese)
[7]    Williams A, Manoharan L, Rosenstock N P, Olsson P A, Hedlund K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytologist, 2017, 213(2): 874-885.
[8]    丁建莉, 姜昕, 关大伟, 马鸣超, 赵百锁, 周宝库, 曹凤明, 李力, 李俊. 东北黑土微生物群落对长期施肥及作物的响应. 中国农业科学, 2016, 49(22): 4408-4418.
DING J L, JIANG X, GUAN D W, MA M C, ZHAO B S, ZHOU B K, CAO F M, LI L, LI J. Responses of micropopulation in black soil of northeast China to long-term fertilization and crops. Scientia Acricultura Sinica, 2016, 49(22): 4408-4418. (in Chinese)
[9]    郝小雨, 马星竹, 高中超, 陈苗苗, 周宝库. 长期施肥下黑土活性氮和有机氮组分变化特征. 中国农业科学, 2015, 48(23): 4707-4716.
HAO X Y, MA X Z, GAO Z C, CHEN M M, ZHOU B K. Variation characteristics of fractions of active nitrogen and organic nitrogen under different long-term fertilization practices in black soil. Scientia Acricultura Sinica, 2015, 48(23): 4707-4716. (in Chinese)
[10]   丁建莉, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期有机无机肥配施对东北黑土真菌群落结构的影响. 植物营养与肥料学报, 2017, 23(4): 914-923.
DING J L, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J. Structure of soil fungal communities under long-term inorganic and organic fertilization in black soil of northeast China. Journal of Plant Nutrition and Fenilizer, 2017, 23(4): 914-923. (in Chinese)
[11]   ERICSSON T. Growth and shoot: Root ratio of seedlings in relation to nutrient availability. Plant & Soil,1995, 168(1): 205-214.
[12]   张旭红, 朱永官, 王幼珊, 林爱军, 陈保冬, 张美庆. 不同施肥处理对丛枝菌根真菌生态分布的影响. 生态学报, 2006, 26(9): 3081-3087.
ZHANG X H, ZHU Y G, WANG Y S, LIN A J, CHEN B D, ZHANG Q M. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in northeast China. Acta Ecologica Sinica, 2006, 26(9): 3081-3087. (in Chinese)
[13]   VERBRUGGEN E, RÖLING W F, GAMPER H A, KOWALCHUK G A, VERHOEF H A, VAN DER HEIJDEN M G. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New phytologist,2010, 186(4): 968-979.
[14]   WILLAMS A, HEDLUND K. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology,2013, 65: 1-7.
[15]   QIN H, LU K, STRONG P J, XU Q, WU Q, XU Z, XU J, WANG H. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Applied Soil Ecology,2015, 89: 35-43.
[16] EGERTON-WARBURTON L, JOHNSON N, ALLEN E. Mycorrhizal community dynamics following nitrogen fertilization: A cross-site test in five grasslands. Ecological Monographs, 2007, 77(4): 527-544.
[17]   CHENG Y, ISHIMOTO K, KURIYAMA Y, OSAKI M, EZAWA T. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant & Soil, 2013, 365(1/2): 397-407.
[18]   CESARO P, TUINEN D V, COPETTA A, CHATAGNIER O, BERTA G, GIANINAZZI S, LINGUA G. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Applied & Environmental Microbiology,2008, 74(18): 5776-5783.
[19]   ZHOU J, JIANG X, ZHOU B, MA M, GUAN D, LI J, CHEN S, CAO F, SHEN D. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry, 2016, 95: 135-143.
[20]   杨海水, 熊艳琴, 王琪, 郭伊, 戴亚军, 许明敏. AM真菌物种多样性: 生态功能、影响因素及维持机制. 生态学报, 2016, 36(10): 2826-2832.
YANG H S, XIONG Y Q, WANG Q, GUO Y, DAI Y J, XU M M. Arbuscular mycorrhizal fungal species diversity: Ecological functioning, determinants and assembling mechanisms. Acta Ecologica Sinica, 2016, 36(10): 2826-2832. (in Chinese)
[21]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社. 1999: 431-472.
LU R K. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Science and Technology Press, 1999: 431-472. (in Chinese)
[22]   STRICKLAND T C, SOLLINS P. Improved method for separating light- and heavy-fraction organic material from soil. Soil Science Society of America Journal,1987, 51(5): 1390-1393.
[23]   VAN TUINEN D, JACQUOT E, ZHAO B, GOLLOTTE A, GIANINAZZI-PEARSON V. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular ecology,1998, 7(7): 879-887.
[24]   GOLLOTTE A, TUINEN D V, ATKINSON D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza, 2004, 14(2): 111-117.
[25]   HAO X, JIANG R, CHEN T. Clustering 16S rRNA for OTU prediction: A method of unsupervised Bayesian clustering. Bioinformatics,2011, 27(5): 611-618.
[26]   CAMENZIND T, HEMPEL S, HOMEIER J, HORN S, VELESCU A, WILCKE W, RILLING M C. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology,2014, 20(12): 3646-3659.
[27]   MUELLER R C, BOHANNAN B J. Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions. Oecologia, 2015, 179(1): 175-185.
[28]   HODGE A, HELGASON T, FITTER A H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology,2010, 3(4): 267-273.
[29]   KONVALINKOVÁ T, PÜSCHEL D, ?EZÁ?VÁ V, GRYNDLEROVÁ H, JANSA J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant & Soil,2017, 419: 319-333.
[30]   HART M M, READER R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist,2002, 153(2): 335-344.
[31]   POWELL J R, PARRENT J L, HAR M M, KLIRONOMOS J N, RILLIG M C, MAHERALI H. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings Biological Sciences, 2009, 276(1676): 4237-4245.
[32]   JOHANSEN A, JAKOBSEN I, JENSEN E S. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytologist, 1993, 124(1): 61-68.
[33]   WERNER G D, KIERS E T. Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205(4): 1437-1442.
[34]   CHEN B, XIAO X, ZHU Y G, SMITH F A, XIE Z M, SMITH S E. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379(2/3): 226-234.
[35]   GOSLING P, MEAD A, PROCTOR M, HAMMOND J P, BENDING G D. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, 2013, 198(2): 546-556.
[36]   TROEH Z I, LOYNACHAN T E. Diversity of arbuscular mycorrhizal fungal species in soils of cultivated soybean fields. Agronomy Journal,2009, 101(6): 1453-1462.
[37]   LIN X, FENG Y, ZHANG H, CHEN R, WANG J, ZHANG J, CHU H. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science & Technology, 2012, 46(11): 5764-5771.
[38]   YANG H, ZHANG Q, DAI Y, LIU Q, TANG J, BIAN X, CHEN X. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: A meta-analysis. Plant & Soil, 2015, 389(1/2): 361-374.
[39]   HIJRI I, SÝKOROVÁ Z, OEHL F, INEICHEN K, MÁDER P, WIEMKEN A, REDECKER D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 2006, 15(8): 2277-2289.
[40]   COTTON T E, FITTER A H, MILLER R M, DUMBRELL A J, HELGASON T. Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytologist, 2015, 205(4): 1598-1607.
[41]   DUMBRELL A J, ASHTON P D, AZIZ N, FENG G, NELSON M, DYTHAM C, FITTER A H, HELGASON T. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 2011, 190(3): 794-804.
[42]   XU X, CHEN C, ZHANG Z, SUN Z, CHEN Y, JIANG J, SHEN Z. The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Scientific Reports, 2017, 7: 45134.
[43]   CLARK R B. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant & Soil,1997, 192(1): 15-22.
[1] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[2] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[3] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[4] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[5] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[6] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[7] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[8] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[9] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[10] WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240.
[11] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[12] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[13] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
[14] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
[15] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!