Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (16): 3092-3100.doi: 10.3864/j.issn.0578-1752.2017.16.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Nitrogen Application Rates on Quercetin and Hesperetin Exuded by Roots in Wheat and Faba Bean Intercropping System

LIU YingChao1, XIAO JingXiu1, TANG Li1, ZHENG Yi1, 2   

  1. 1College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201; 2Yunnan Provincial Department of Education, Kunming 650223
  • Received:2016-12-07 Online:2017-08-16 Published:2017-08-16

Abstract: 【Objective】The dynamic changes and accumulation characteristics of quercetin and hesperetin at different nitrogen levels and different growth stages of wheat and faba bean intercropping system in order to provide a basis for further investigation of the mechanism of increasing yield and controlling diseases.【Method】 In a pot experiment, mesh barrier (MB) and, polythene barrier (PB) were used to determine the secretion amount of quercetin and hesperetin exuded by roots of wheat and faba bean at different nitrogen levels (1/2N﹕half of the normal application rate; N: conventional application rate; 3/2N: 1.5 times rate of the normal application rate) in intercropping system.【Result】N levels and root separations affected biomass and root-shoot ratio of crops in wheat and faba bean intercropping system. With the increase of nitrogen application, the biomass of wheat and faba bean increased by 45%-62.5% and 3.2%-18.9%, and the root-shoot ratio decreased by 33.8%-47.3% and 11.8%-26.9%, respectively; Compared with the plastic separation, the biomass of nylon separated wheat and faba bean increased by 4.2%-25% and 19%-38.6% at the same nitrogen levels at 60 d. With the growth stages, the differences were not significant. Root separation and nitrogen levels affected quercetin and hesperetin exuded by roots of wheat and faba bean in intercropping system. With the increase of nitrogen application, the secretion amount of quercetin and hesperetin were decreased, compared with low nitrogen conditions, under conventional nitrogen application rate and high nitrogen application rate, quercetin exuded by wheat root decreased by 23.4% and 62.3%, hesperetin decreased by 32.2% and 64.5%, quercetin exuded by faba bean root decreased by 35.4% and 44.1%, hesperetin decreased by 11.9% and 23.9%. At the same nitrogen level, quercetin and hesperetin exuded by nylon separated roots of wheat and faba bean were higher than that of plastic partition. Under the condition of low nitrogen and conventional nitrogen application rates, the secretion of quercetin in nylon-separated wheat root were higher 15.3% and 27.1% than that in plastic, the secretion of hesperetin in nylon-separated wheat root were higher 21% and13.7% than that in plastic; the quercetin secreted by nylon-separated faba bean were higher 34.6% and 56.6% than that of plastic, hesperetin was higher than plastic separated by 16.9% and 5.1%; there was no significant difference between the two root systems under high nitrogen condition.【Conclusion】Root separation affected quercetin and hesperetin secretion amount exuded by wheat and faba bean roots, but this effect was controlled by nitrogen application levels, under the conditions of low nitrogen and conventional nitrogen application rates, quercetin and hesperetin that exuded by nylon-separated root in wheat and faba bean intercropping were higher than that of plastic partition, the difference was not significant under high nitrogen condition.

Key words:  wheat, faba bean, intercropping, nitrogen application, quercetin, hesperetin

[1]    BAIS H P, WEIR T L, PERRY L G, GILROY S, VIVANCO J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233-266.
[2]    张福锁, 曹一平. 根际动态过程与植物营养. 土壤学报, 1992, 29(3): 239-250.
ZHANG F S, CAO Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, 29(3): 239-250. (in Chinese)
[3]    HAO W Y, SHEN Q R. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant and Soil, 2010, 336(1/2): 485-497.
[4]    WANG D, YANG S M, TANG F, ZHI H Y. Syrnbiosis specificity in the legume: Rhizobial mutualism. Cellular Microbiology, 2012, 14(3): 334-342.
[5]    NOVAK K, CHOVANEC P, SKRDLETA V, KROPACOVA M, LISA L, NEMCOVA M. Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). Journal of Experimental Botany, 2002, 53(375): 1735-1745.
[6]    LI L, ZHANG L Z, ZHANG F S. Crop mixtures and the mechanisms of overyielding//Levin S A. Encyclopedia of Biodiversity (Second Edition). Waltham, MA: Academic Press, 2013: 382-395.
[7]    BROUGHTON W J, ZHANG F, PENET X, STAEHELIN C. Signals exchanged between legumes and rhizobium: Agricultural uses and perspectives. Plant and Soil, 2003, 252(1): 129-137.
[8]    DAYAKAR V, BADRI J M, VIVANCO. Regulation and function of root exudates. Plant, Cell and Environment, 2009, 32(6): 666-681.
[9]    Li B, KRUMBEIN A, NEUGART S, LI L, SCHREINER M. Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean. Journal of Plant Interactions, 2012, 7(4): 1-8.
[10]   姜卉, 赵平, 汤利, 郑毅, 肖靖秀. 云南省不同试验区小麦蚕豆间作的产量优势分析与评价. 云南农业大学学报(自然科学版), 2012, 27(5): 646-652.
JIANG H, ZHAO P, TANG L, ZHENG Y, XIAO J X. Analysis and evaluation of yield advantages in wheat and faba bean intercropping system in Yunnan province. Journal of Yunnan Agricultural University (Natural Science), 2012, 27(5): 646-652. (in Chinese)
[11]   冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015, 41(9): 1426-1434.
FENG X M, YANG Y, REN C Z, HU Y G, ZENG Z H. Effects of legumes intercropping with oat on photosynthesis characteristics and grain yield. Acta Agronomica Sinica, 2015, 41(9): 1426-1434. (in Chinese)
[12]   杨进成, 刘坚坚, 安正云, 朱有勇, 李成云, 陈向东, 卢玉娥, 李红彦, 甸兰芬. 小麦蚕豆间作控制病虫害与增产效应分析. 云南农业大学学报(自然科学版), 2009, 24(3): 340-348.
YANG J C, LIU J J, AN Z Y, ZHU Y Y, LI C Y, CHEN X D, LU Y E, LI H Y, DIAN L F. Analyses on effect of interplanting on diseases and pests control and yield increase of wheat and faba bean. Journal of Yunnan Agricultural University (Natural Science), 2009, 24(3): 340-348. (in Chinese)
[13]   董艳, 董坤, 郑毅, 汤利, 杨智仙. 不同品种小麦与蚕豆间作对蚕豆枯萎病的防治及其机理. 应用生态学报, 2014, 25(7): 1979-1987.
DONG Y, DONG K, ZHENG Y, TANG L, YANG Z X. Faba bean fusarium wilt control and its mechanism in different wheat varieties and faba bean intercropping system.Chinese Journal of Applied Ecology, 2014, 25(7): 1979-1987. (in Chinese)
[14]   吴娜, 刘晓侠, 刘吉利, 鲁文.马铃薯/燕麦间作对马铃薯光合特性与产量的影响. 草业学报, 2015, 24(8): 65-72.
WU N, LIU X X, LIU J L, LU W. Effect of intercropping potatoes with oats on the photosynthetic characteristics and yield of potato. Acta Prataculturae Sinica, 2015, 24(8): 65-72. (in Chinese)
[15]   YE Y L, WANG G L, HUANG Y F, ZHU Y J, MENG Q F, CHEN X P, ZHANG F S, CUI Z L. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Research, 2011, 124(3): 316-322.
[16]   赵平, 郑毅, 汤利, 鲁耀, 肖靖秀, 董艳. 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响. 中国生态农业学报, 2010, 18(4): 742-747.
ZHAO P, ZHENG Y, TANG L, LU Y, XIAO J X, DONG Y. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat. Chinese Journal of Eco-Agriculture, 2010, 18(4): 742-747. (in Chinese)
[17]   乔鹏, 汤利, 郑毅, 李少明. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征. 植物营养与肥料学报, 2010, 16(5): 1086-1093.
QIAO P, TANG L, ZHENG Y, LI S M. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1086-1093. (in Chinese)
[18]   董艳, 董坤, 汤利, 郑毅, 杨智仙, 肖靖秀, 赵平, 胡国彬. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系. 生态学报, 2013, 33(23): 7445-7454.
DONG Y, DONG K, TANG L, ZHENG Y, YANG Z X, XIAO J X, ZHAO P, HU G B. Relationship between rhizosphere microbial community functional diversity and faba bean fusarium wilt occurrence in wheat and faba bean intercropping system. Acta Ecologica Sinica, 2013, 33(23): 7445-7454. (in Chinese)
[19]   刘晓燕, 何摇萍, 金继运. 氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系. 植物营养与肥料学报, 2008, 14(5): 929-934.
LIU X Y, HE Y P, JIN J Y. Effect of potassium chloride on the exudation of sugars and phenolic acids by maize root and its relation to growth of stalk rot pathogen. Plant Nutrition and Fertilizer Science, 2008, 14(5): 929-934. (in Chinese)
[20]   NEUMANN G, RÖMHELD V. The release of root exudates as affected by the plant physiological status//Pinton R, Varanini Z, Nannipieri P. The Rhizosphere Biochemistry and Organic Substances at the Soil Plant Interface. 2ndEd. Boca Raton: CRC Press, 2007: 23-72.
[21]   Li X P, MU Y H, CHENG Y B, LIU Y, HAI N. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiololog Plant, 2013, 35(4): 1113-1119.
[22]   TOSTI G, GUIDUCCI M. Durum wheat-faba bean temporary intercropping: Effects on nitrogen supply and wheat quality. Europe Journal Agronomy, 2010, 33(3): 157-165.
[23]   肖靖秀, 郑毅, 汤利. 小麦/蚕豆间作对根系分泌低分子量有机酸的影响. 应用生态学报, 2014, 25(6): 1739-1744.
XIAO J X, ZHENG Y, TANG L. Effects of wheat and faba bean intercropping on root exudation of low molecular weight organic acids.Chinese Journal of Applied Ecology, 2014, 25(6): 1739-1744. (in Chinese)
[24]   HELLOU G C, BRISSON N, LAUNAY M, FUSTEC J, CROZAT Y. Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crops Research, 2007, 103(1): 76-85.
[25]   任书杰, 张雷明, 张岁岐, 上官周平. 氮素营养对小麦根冠协调生长的调控. 西北植物学报, 2003, 23(3): 395-400.
REN S J, ZHANG L M,ZHANG S Q,SHANGGUAN Z P. The effect of nitrogen nutrition on coordinate growth of root and shoot of winter wheat. Acta Botanica Boreal-Occident Sinica, 2003, 23(3): 395-400. (in Chinese)
[26]   张绪成, 郭天文, 谭雪莲, 高世铭. 氮素水平对小麦根-冠生长及水分利用效率的影响. 西北农业学报, 2008, 17(3): 97-102.
ZHANG X C, GUO T W, TAN X L, GAO S M. The effects of nitrogen level on the root and shoot growth and their relationship with the water use efficiency in wheat plants. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(3): 97-102. (in Chinese)
[27]   王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21(3): 282-289.
WANG Y Z, LIU X W, SUN H Y, ZHANG X Y, ZHANG L R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282-289. (in Chinese)
[28]   CASAGRANDE R, GEORGETTI S R, VERRI W A, JABOR J R, SANTOS A C, FONSECA M J. Evaluation of functional stability of quercetin as a raw material and in different topical formulations by its antilipoperoxidative activity. AAPS PharmSciTech, 2006, 7(1): E64-E71.
[29]   NAPIMOGA M H, CLEMENTE-NAPIMOGA J T, MACEDO C G, FREITAS F F, STIPP R N, PINHORIBEIRO F A. Queroetin inhibits inflammatory bone resorption in a mouse periodontitis model. Journal of Natural Products, 2013, 76(12): 2316-2321.
[30]   NIU G M, YIN S M, XIE S F, LI Y Q, NIE D N, MA L P, WANG X J, WU Y D. Quercetin induces apoptosis by activating caspase-3 and regulating Bel-2 and cyclooxygenase-2 pathways in human HL-60 cells.Acta Biochimica et Biophysica Sinica, 2011, 43(1): 30-37.
[31]   WANG P, VADGAMA J V, SAID J W, MAGYAR C E, DOAN N, HEBER D, HENNING S M. Enhanced inhibition of prostate cancer, enograft tumor growth by combining quercetin and green tea. The Journal of Nutritional Biochemistry, 2014, 25(1): 73-80.
[32]   CHEN S Y, WU Y C, CHUNG J G, YANG J S, LU H F, MEIFEN T. Quercetin-induced apoptosis acts through mitochondrial and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human & Experimental Toxicology,2009, 28(8): 493-503.
[33]   LI B, LI Y Y, WU H M, ZHANG F F, LI C, LI X X. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America,2016, 113(23): 6496.
[34]   HAUGGAARDNIELSEN H, GOODINGB M, AMBUSA P, CORREHELLOUC G, CROZATC Y, DAHLMANND C, DIBETC A, FRAGSTEIND P, PRISTERIE A, MONTIE M E S. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1): 64-71.
[35]   BRZOSTEK E R, GRECO A, DRAKE J E, FINZI A C. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 2013, 115(1/3): 65-76. 
[36]   LIU L X, CHEN J. Solubility of hesperetin in arious solvents from (288.2 to 323.2) K. Journal of Chemical & Engineering Data, 2008, 53(7): 877-882.
[37]   BEGUMAA, LEIBOVITCH S, MIGNER P, ZHANG F. Inoculation of pea (Pisum sativum L.) by rhizobium leguminosarum bv. viceae preincubated with naringenin and hesperetin or application of naringenin and hesperetin directly into soil increased pea nodulation under short season conditions. Plant and Soil, 2001, 237(1): 71-80.
[38]   于宏伟, 刘树彬, 张东红, 牛辉. 橙皮素应用研究进展. 安徽农业科学, 2010, 38(8): 3907-3908.
YU H W, LIU S B, ZHANG D H, NIU H. Research progress of hesperetin. Journal of Anhui Agricultural Sciences, 2010, 38(8): 3907-3908. (in Chinese)
[39]   CHEN Y X, ZHANG F S, TANG L, ZHENG Y, LI Y J, CHRISTIE P, LI L. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant and Soil, 2007, 291(1): 1-13.
[40]   LI Q Z, SUN J, WEI X J, CHRISTIE P, ZHANG F S, LI L. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil, 2011, 339(1): 147-161.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[4] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[7] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
[8] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[9] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[10] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[11] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[12] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[13] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
[14] HAO HaiPing,BAI HongTong,XIA Fei,HAO YuanPeng,LI Hui,CUI HongXia,XIE XiaoMing,SHI Lei. Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959-3969.
[15] WANG XuMin,LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun. Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!