Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (5): 792-801.doi: 10.3864/j.issn.0578-1752.2017.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of an Evaluation System of Shade Tolerance in Soybean and Its Variation in Southern China Germplasm Population

SUN ZuDong1, ZHANG ZhiPeng2, CAI ZhaoYan1, ZENG WeiYing1, LAI ZhenGuang1, CHEN HuaiZhu1,  YANG ShouZhen1, TANG XiangMin1, SU YanZhu2, GAI JunYi2   

  1. 1Institute of Economic Crops, Guangxi Academy of Agricultural Sciences/Ministry of Agriculture Southwest Experimental Station of Maize-Soybean Intercrop, Nanning 530007; 2 Soybean Research Institute of Nanjing Agricultural University/Ministry of Agriculture Key Laboratory for Soybean Biology, Genetics and Breeding, Nanjing 210095
  • Received:2016-09-02 Online:2017-03-01 Published:2017-03-01

Abstract: 【Objective】 Shade tolerance is an important factor that affects the yield of intercropped soybean, thus limiting the extension of intercropping patterns of soybean. It is necessary to establish an efficient, versatile and reliable shade tolerance identification system to be used in identifying the shade tolerant sources from germplasm populations, which can be used for shade tolerance breeding. 【Method】 Samples of 60 soybean varieties with different shade-tolerance levels were chosen from the germplasm storage in Guangxi Academy of Agricultural Sciences were used in this study. Firstly, the suitable shading treatment for shade tolerance evaluation was chosen among the three shading levels (i.e. 15%, 30% and 60%) according to a reasonable lodging rate of the tested varieties. Secondly, the suitable shade tolerance indicators were chosen from the 17 traits, including plant height, mean internode length, petiole length, shoot fresh weight and so forth. Then, the suitable measuring time was chosen among the three dates, i.e. on the 40th, 50th and 60th day after sowing according to the error coefficient of variation and phenotypic coefficient of variation of the selected shade tolerance indicator. Finally, the shade tolerance evaluation procedure was assembled to include the suitable shading level, shade tolerance indicator and measuring time. Using the designed procedure, the shade tolerance of 453 soybean varieties from southern China was evaluated, from which the tolerant sources were screened out. 【Result】 The 30% shading intension condition was better than other shading degrees. More specifically, there showed lower lodging rate of accessions (22%), higher phenotypic coefficient of variation (25%), and better distinction among accessions. The shade tolerance indicator which composed of the plant height and the average internode length is better than other indicators after comprehensive tradeoff, with advantages as follows: i) It is more accurate due to its smaller error coefficient of variation (9.36%) and higher heritability (95.43%); ii) It is more stable, as its correlation (0.92) between two environments is the largest; iii) It has a better distinction degree, because its phenotypic coefficient of variation (31.25%) and genotypic coefficient of variation (30.52%) are larger; iv) It is more consistent to the field shade tolerance situation with the highest correlation (0.73) between the indicator and visual shade tolerance level. Compared to other measuring times, the shade tolerance indicator on the 50th day after sowing is better, for example its correlation (0.87) between two environments is the highest and error coefficient of variation (7.75%) is the smallest. Therefore, the average of relative plant height and average length of internode was defined on the 50th day after sowing under 30% shading intension condition as the shade tolerance index (STI). The smaller STI, the more shade tolerance of the accession. The STI of 453 soybean varieties from southern China ranged from 1.11 to 2.61, with an average of 1.55 and there showed significant differences among the accessions. In addition, the heritability (91.13%) of these soybean varieties indicated that soybean shade tolerance had high accuracy from phenotypic selection. The STI in eco-region Ⅲ, Ⅳ ,Ⅴ and Ⅵ showed abundant variations with the range of 1.19-2.08, 1.17-2.61, 1.27-2.37, and 1.11-2.54, respectively, which provide materials for the improvement of shade tolerance. Furthermore, the released cultivars and landraces also have abundant variations with the range of 1.11-2.61 and 1.17-2.54, respectively. However, eight of the eleven accessions with high shade tolerance in two environments were released cultivars, which implies the achievement in shade tolerance breeding of soybeans. 【Conclusion】 The shade tolerance indicator which composed of plant height and average internode length on the 50th day after sowing was concluded to be accurate, stable, sensitive and authentic. Using this evaluation system, a number of shade tolerant soybean varieties were screened out from the southern China germplasm population.

Key words: soybean, shade tolerance, variation, germplasm

[1]    杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. 大豆科学, 2008, 27(1): 1-7.
YANG W Y, YONG T W, REN W J, FAN G Q, MU J Y, LU X L. Develop relay-planting soybean, revitalize soybean industry. Soybean Science, 2008, 27(1): 1-7. (in Chinese)
[2]    Roig-Villanova I, Martinez-Garcia J F. Plant responses to vegetation proximity: A whole life avoiding shade. Frontiers in Plant Science, 2016, 7: 236.
[3]    Gommers C M, Visser E J, StOnge K R, Voesenek L A, Pierik R. Shade tolerance: When growing tall is not an option. Trends in Plant Science, 2013, 18(2): 65-71.
[4]    Casal J J. Shade avoidance. The Arabidopsis book, 2012, 10: e0157.
[5]    李初英, 孙祖东, 陈怀珠, 杨守臻. 不同时期接受遮光胁迫对大豆产量性状及产量的影响. 西南农业学报, 2006, 19(2): 265-269.
LI C Y, SUN Z D, CHEN H Z, YANG S Z. Influence of shading stressduring different growth stage on yield and main characters of soybean. Southwest China Journal of Agricultural Sciences, 2006, 19(2): 265-269. (in Chinese)
[6]    武晓玲, 谭千军, 陈钒杰, 吴雨珊, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期茎秆相关性状对荫蔽的响应. 植物遗传资源学报, 2015, 16(5): 1111-1116.
WU X L, TAN Q J, CHEN F J, WU Y S, LIU W G, SHE Y H, YANG W Y. Study on response of soybean stem characters to shading at seedling stage. Journal of Plant Genetic Resources, 2015, 16(5): 1111-1116. (in Chinese)
[7]    刘卫国, 邹俊林, 袁晋, 蒋涛, 武晓玲, 杨文钰. 套作大豆农艺性状研究. 中国油料作物学报, 2014, 36(2): 219-223.
LIU W G, ZOU J L, YUAN J, JIANG T, WU X L, YANG W Y. Research on the agronomic traits of relay cropping soybean. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 219-223. (in Chinese)
[8]    梁镇林. 耐阴与不耐阴大豆茎叶性状的变异及差异比较研究. 大豆科学, 2000, 19(1): 35-41.
LIANG Z L. Studies on variation and difference of characters of stem and leaf between shade-enduring and shade-non-enduring soybeans. Soybean Science, 2000, 19(1): 35-41. (in Chinese)
[9]    刘婷, 刘卫国, 任梦露, 杜勇利, 邓榆川, 邹俊林, 方萍, 杨文钰. 遮荫程度对不同耐荫性大豆品种光合及抗倒程度的影响. 中国农业科学, 2016, 49(8): 1466-1475.
LIU T, LIU W G, REN M L, DU Y L, DENG Y C, ZOU J L, FANG P, YANG W Y. Effects of shade degrees on photosynthesis and lodging resistance degree of different shade tolerance soybean. Scientia Agricultu Sinica, 2016, 49(8): 1466-1475. (in Chinese)
[10]   王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39(10): 1871-1879.
WANG Y, YANG W Y, ZHANG X, YONG T W, LIU W G, SU B Y. Effects of shading at different growth stages on different traits and yield of soybean. Acta Agronomica Sinica, 2013, 39(10): 1871-1879. (in Chinese)
[11]   李初英, 孙祖东, 陈怀珠, 杨守臻. 不同遮光胁迫对大豆生长发育进程及形态性状的影响. 中国农学通报, 2006, 22(9): 170-173.
LI C Y, SUN Z D, CHEN H Z, YANG S Z. Study of the influence of shading stress to the development stages and the form characters of soybean. Chinese Agricultural Science Bulletin, 2006, 22(9): 170-173. (in Chinese)
[12]   刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33(2): 141-146.
LIU W G, JIANG T, SHE Y H, YANG F, YANG W Y. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146. (in Chinese)
[13]   罗玲, 于晓波, 万燕, 蒋涛, 杜俊波, 邹俊林, 杨文钰, 刘卫国. 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015, 48(13): 2528-2537.
LUO L, YU X B, WAN Y, JIANG T, DU J B, ZOU J L, YANG W Y, LIU W G. The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage. Scientia Agricultura Sinica, 2015, 48(13): 2528-2537. (in Chinese)
[14]   GONG W, QI P, DU J, SUN X, WU X, SONG C. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE, 2014, 9(6): e98465.
[15]   王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮. 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学, 2016, 49(11): 2072-2081.
WANG Y, ZhANG X, YANG W Y, SUN X, SU B Y, CUI L. Effect of shading on soybean Leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages. Scientia Agricultura Sinica, 2016, 49(11): 2072-2081. (in Chinese)
[16]   杨峰, 崔亮, 武晓玲, 刘卫国, 杨文钰. 不同空间配置套作大豆后期农学参数及光谱特征分析. 中国油料作物学报, 2012, 34(3): 268-272.
YANG F, CUI L, WU X L, LIU W G, YANG W Y. Soybean agronomic and hyperspectral characteristics at later stage under spatial patterns of maize-soybean intercropping. Chinese Journal of Oil Crop Sciences, 2012, 34(3): 268-272. (in Chinese)
[17]   陈怀珠, 孙祖东, 杨守臻, 李初英. 荫蔽对大豆主要性状的影响及大豆耐荫性鉴定方法研究初报. 中国油料作物学报, 2003, 25(4):78-82.
CHEN H Z, SUN Z D, YANG S Z, LI C Y. Effect of shading on major characters of soybean and preliminary study on the identification method of soybean shade endurance. Chinese Journal of Oil Crop Sciences, 2003, 25(4): 78-82. (in Chinese)
[18]   黄其椿, 李初英, 赵洪涛, 吴建明, 赵艳红, 杨守臻, 陈怀珠, 孙祖东. 菜用大豆种质资源遮光胁迫下的耐阴性研究. 西南农业学报, 2012, 25(6): 2212-2217.
HUANG Q C, LI C Y, ZHAO H T, WU J M, Zhao Y H, YANG S Z, CHEN H Z, SUN Z D. Research of shade-tolerant on vegetable soybean germplasm resources under shading stress. Southwest China of Agricultural Sciences, 2012, 25(6): 2212-2217. (in Chinese)
[19]   李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47(15): 2927-2939.
LI C H, YAO X D, JU B T, ZHU M Y, WANG H Y, ZHANG H J, AO X, YU C M, XIE F T, SONG S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Scientia Agricultura Sinica, 2014, 47(15): 2927-2939. (in Chinese)
[20]   武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13): 2497-2507.
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. (in Chinese)
[21]   邱丽娟, 常汝镇, 刘章雄, 关荣霞. 大豆种质资源描述规范和数椐标准. 北京: 中国农业出版社, 2006: 20-55.
QIU L J, CHANG R Z, LIU Z X, GUAN R X. Descriptors and Data Standard for Soybean. Beijing: China Agriculture Press, 2006: 20-55. (in Chinese)
[22]   盖钧镒, 汪越胜. 中国大豆品种生态区域划分的研究. 中国农业科学, 2001(2): 139-145.
GAI J Y, WANG Y S. A study on the varietal eco-regions of soybeans in China. Scientia Agricultura Sinica, 2001(2): 139-145. (in Chinese)
[23]   盖钧镒, 崔章林. 我国南方大豆地方品种群体特点和特异种质的发掘与遗传基础研究. 中国农学通报, 1993, 9(2): 1-5.
GAI J Y, CUI Z L. Studies on the pproperties of soybean landrace population from southern china and on the germplasm with specific target trait and their genetic background. Chinese Agricultural Science Bulletin, 1993, 9(2): 1-5. (in Chinese)
[24]   盖钧镒, 崔章林. 我国南方大豆特异种质资源的研究. 作物杂志, 1992(1): 3-5.
GAI J Y, CUI Z L. Studies on gene resources of soybeans from southern china for specific breeding purposes. Crops, 1992(1): 3-5. (in Chinese)
[25]   周蓉, 陈海峰, 王贤智, 张晓娟, 单志慧, 吴学军, 邱德珍, 伍宝 朵, 沙爱华, 杨中路, 周新安. 不同发育阶段大豆株高和茎粗QTL的动态分析. 植物遗传资源学报, 2010, 11(3): 349-359.
ZHOU R, CHEN H F, WANG X Z, ZHANG X J, SHAN Z H, WU X J, QIU D Z, WU B D, SHA A H, YANG Z L, ZHOU X A. Dynamic analysis of QTL for plant height an stem diameter at different developmental stages in soybean. Journal of Plant Genetic Resources, 2010, 11(3) : 349-359. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[10] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[11] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[12] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[13] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[14] Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat [J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
[15] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!