Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 64-76.doi: 10.3864/j.issn.0578-1752.2017.01.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Global Sensitivity Analysis of AquaCrop Crop Model Parameters Based on EFAST Method

XING HuiMin1, 2, 3, 4, XIANG ShiYao1, XU XinGang2, 3, FENG HaiKuan2, 3, YANG GuiJun2, 3, CHEN ZhaoXia2, 3   

  1. 1College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083; 2Remote Sensing Mintech, Beijing Research Center for Information Technology in Agriculture, Beijing 100097; 3Remote Sensing Mintech, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097; 4Department of Environment and Planning, Shangqiu Normal University, Shangqiu 476000, Henan
  • Received:2016-06-01 Online:2017-01-01 Published:2017-01-01

Abstract: 【Objective】Sensitivity analysis is an important link in crop model localization, and it plays an important role in AquaCrop model calibration and application.【Method】In this study, in order to identify the sensitivity parameters, the 2012-2013, 2013-2014 and 2014-2015 winter wheat experiments were conducted in National Precision Agriculture Demonstration Research Base in Beijing, China, the Extended Fourier Amplitude Sensitivity Test (EFAST) method was used to carry out sensitivity analysis of 42 crop parameters of AquaCrop model.【Result】The sensitivity parameters were: (1) For dry biomass: water and temperature stress (minimum growing degrees required for full biomass production (stbio), upper threshold of soil water depletion factor for canopy senescence (psen)), biomass and yield production (water productivity normalized (wp)), transpiration (crop coefficient when canopy is complete but prior to senescence (kcb)), canopy and phaenological development (GGD-increase in canopy cover (cgc), GDD-from sowing to emergence (eme), maximum canopy cover in fraction soil cover (mcc), GGD-decrease in canopy cover (cdc), total length of crop cycle in growing degree-days (mat), building-up of harvest index during yield formation (hilen)). stbio, kcb, wp and cgc were the four most sensitive parameters; (2) For canopy cover: canopy and phaenological development (cgc, mcc, number of plants per hectare (den), soil surface covered by an individual seedling at 90% emergence (ccs), mat and cdc), root development (maximum effective rooting depth (rtx)), water and temperature stress (psen), transpiration (kcb); (3) For yield: canopy and phaenological development (GDD-from sowing to flowering (flo), mat, cdc, hilen and GDD-from sowing to start senescence (sen)), water and temperature stress (psen), biomass and yield production (reference harvest index (hi) and wp), transpiration (kcb).【Conclusion】The results of first order and total order sensitivity analysis for AquaCrop model of winter wheat maximum dry biomass and dry biomass time-varying showed that there was a little difference in the choice of sensitivity parameters, but many differences in the ranking. The sensitivity analysis of maximum dry biomass was not comprehensive, which could not analyze the effect of crop parameters on dry biomass during the whole growth period. The results of the first order and total order sensitivity analysis for AquaCrop model of winter wheat canopy cover time-varying showed that there was a good consistency in the selection and ranking of sensitive parameters. The values of total order sensitivity indices of crop parameters were higher than first order, and the influences on canopy cover were more obvious. This study provides guidelines for AquaCrop model calibration and application in Beijing, China, as well providing guidance to simplify the AquaCrop model and improve its precision, especially when many parameters are used.

Key words: winter wheat, AquaCrop model, sensitivity analysis, EFAST method, biomass

[1]    ITTERSUM M K V, DONATELLI M. Modelling cropping systems—highlights of the symposium and preface to the special issues. European Journal of Agronomy, 2003, 18(3): 187-197.
[2]    BUTTERBACH-BAHL K, KESIK M, MIEHLE P, PAPEN H, LI C. Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant & Soil, 2004, 260(1/2): 311-329.
[3]    KLEPPER O. Multivariate aspects of model uncertainty analysis: Tools for sensitivity analysis and calibration. Ecological Modelling, 1997, 101(1): 1-13.
[4]    CONFALONIERI R, BELLOCCHI G, TARANTOLA S, ACUTIS M, DONATELLI M, GENOVESE G. Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environmental Modelling & Software, 2010, 25(4): 479-488.
[5]    SALTELLI A, RATION M, ANDRES T, CAMPOLONGO F, CARIBONI J, GATELLI D, SAISANA M, TARANTOLA S. Global Sensitivity Analysis: The Primer. Chichester: John Wiley & Sons Inc, 2008.
[6]    GRIENSVEN A V, MEIXNER T, GRUNWALD S, BISHOP T, DILUZIO M, SRINIVASAN R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 2006, 324(1/4): 10-23.
[7]    SALTELLI A, ANNONI P. How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software, 2010, 25(12): 1508-1517.
[8]    SALTELLI A, TARANTOLA S, CAMPOLONGO F. Sensitivity analysis as an ingredient of modeling. Statistical Science, 2000, 15(4): 377-395.
[9]    MORRIS M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161-174.
[10]   SOBOL’ I M. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1990, 2(1): 112-118.
[11]   CUKIER R I, LEVINE H B, SHULER K E. Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 1978, 26(1): 1-42.
[12]   SALTELLI A. Sensitivity analysis: Could better methods be used? Journal of Geophysical Research Atmospheres, 1999, 104(D3): 3789-3793.
[13]   SALTELLI A, TARANTOLA S, CHAN P S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1): 39-56.
[14]   KIOUTSIOUKIS I, TARANTOLA S, SALTELLI A, GATELLI D. Uncertainty and global sensitivity analysis of road transport emission estimates. Atmospheric Environment, 2004, 38(38): 6609-6620.
[15]   SALTELLI A, TARANTOLA S, CAMPOLONGO F, RATTO M. Sensitivity analysis in practice: A guide to assessing scientific models. Journal of the American Statistical Association, 2006, 101(473): 398-399.
[16]   姜志伟, 陈仲新, 周清波, 任建强. CERES-Wheat作物模型参数全局敏感性分析. 农业工程学报, 2011, 27(1): 236-242.
JIANG Z W, CHEN Z X, ZHOU Q B, REN J Q. Global sensitivity analysis of CERES-Wheat model parameters. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 236-242. (in Chinese)
[17]   DEJONGE K C, ASCOUGHⅡ J C, AHMADI M, ANDALES A A, ARABI M. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Ecological Modelling, 2012, 231(4): 113-125.
[18]   宋明丹, 冯浩, 李正鹏, 高建恩. 基于Morris和EFAST的CERES-Wheat模型敏感性分析. 农业机械学报, 2014, 45(10): 124-131.
SONG M D, FENG H, LI Z P, GAO J E. Global sensitivity analyses of DSSAT-CERES-wheat model using Morris and EFAST methods. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 124-131. (in Chinese)
[19]   吴立峰, 张富仓, 范军亮, 周罕觅, 邢英英, 强生才. 不同灌水水平下CROPGRO棉花模型敏感性和不确定性分析. 农业工程学报, 2015(15): 55-64.
WU L F, ZHANG F C, FAN J L, ZHOU H M, XING Y Y, QIANG S C. Sensitivity and uncertainty analysis for CROPGRO-cotton model at different irrigation levels. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 55-64. (in Chinese)
[20]   何亮, 赵刚, 靳宁, 庄伟, 于强. 不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析. 农业工程学报, 2015, 31(14): 148-157.
HE L, ZHAO G, JIN N, ZHUANG W, YU Q. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 148-157. (in Chinese)
[21]   WANG J, LI X, LU L, Feng F. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling & Software, 2013, 48(5): 171-182.
[22]   何亮, 侯英雨, 赵刚, 邬定荣, 于强. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016, 32(2): 169-179.
HE L, HOU Y Y, ZHAO G, WU D R, YU Q. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 169-179. (in Chinese)
[23]   吴锦, 余福水, 陈仲新, 陈晋. 基于EPIC模型的冬小麦生长模拟参数全局敏感性分析. 农业工程学报, 2009, 25(7): 136-142.
WU J, YU F S, CHEN Z X, CHEN J. Global sensitivity analysis of growth simulation parameters of winter wheat based on EPIC model. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 136-142. (in Chinese)
[24]   VANUYTRECHT E, RAES D, WILLEMS P. Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling & Software, 2014, 51(1): 323-332.
[25]   金秀良. 基于AqoaCrop模型与多源遥感数据的北方冬小麦水分利用效率估算[D]. 扬州: 扬州大学, 2015.
JIN X L. Estimation of water use efficiency of winter wheat based on AquaCrop model and multi-source remote sensing data in Northern[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[26]   黄健熙, 武思杰, 刘兴权, 马冠南, 马鸿元, 吴文斌, 邹金秋. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测. 农业工程学报, 2012, 28(4): 142-148.
HUANG J X, WU S J, LIU X Q, MA G N, MA H Y, WU W B, ZOU J Q. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(4): 142-148. (in Chinese)
[27]   黄健熙, 马鸿元, 田丽燕, 王鹏新, 刘峻明. 基于时间序列LAI 和ET 同化的冬小麦遥感估产方法比较. 农业工程学报, 2015, 31(4): 197-203.
HUANG J X, MA H Y, TIAN L Y, WANG P X, LIU J M. Comparison of remote sensing yield estimation methods for winter wheat based on assimilating time-sequence LAI and ET. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 197-203. (in Chinese)
[28]   姜志伟, 陈仲新, 任建强, 周清波. 粒子滤波同化方法在CERES- Wheat作物模型估产中的应用. 农业工程学报, 2012, 28(14): 138-146.
JIANG Z W, CHEN Z X, REN J Q, ZHOU Q B. Estimation of crop yield using CERES-Wheat model based on particle filter data assimilation method. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 138-146. (in Chinese)
[29]   解毅, 王鹏新, 刘峻明, 李俐. 基于四维和变分和集合卡尔曼滤波同化方法的冬小麦单产估测. 农业工程学报, 2015, 31(1): 187-195.
XIE Y, WANG P X, LIU J M, LI L. Winter wheat yield estimation based on assimilation method combined with 4DVAR and EnKF. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 187-195. (in Chinese)
[30]   STEDUTO P, HSIAO T C, RAES D, FERERES E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 2009, 101(3): 426-437.
[31]   RAES D, STEDUTO P, HSIAO T C, FERERES E. AquaCrop —The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 2009, 101(3): 438-447.
[32]   HSIAO T C, HENG L, STEDUTO P, ROJAS L B, RASE D, FERERES E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 2009, 101(3):448-459.
[33]   DOORENBOS J, KASSAM A H. Yield response to water. Irrigation And Drainage Paper no. 33. FAO, Rome, 1979.
[34]   FAO. AquaCrop –the FAO crop model to simulated yield response to water: Reference manual annex I – AquaCrop crop parameters. www. Fao.org/nr/water/Aquacrop.html, 2012.
[35]   李振海. 基于遥感数据和气象预报数据的DSSAT模型冬小麦产量和品质预报[D]. 杭州: 浙江大学, 2016.
LI Z H. Predicting winter wheat yield and quality by integrating of remote-sensing data and the weather forecast data into the DSSAT model[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[3] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[6] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[7] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[8] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[9] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[10] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[11] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[12] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[13] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[14] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[15] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!