Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4460-4468.doi: 10.3864/j.issn.0578-1752.2016.22.018

• RESEARCH NOTES • Previous Articles    

The Grape Anthocyanin Biosynthesis Regulation by Different Color Fruit Bags

JI Xiao-hao, WANG Hai-bo, ZHANG Ke-kun, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, WANG Zhi-qiang, LIU Feng-zhi   

  1. Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2016-04-29 Online:2016-11-16 Published:2016-11-16

Abstract: 【Objective】The aim of this study was to ascertain the effect of different fruit color bags on grape anthocyanin biosynthesis and preliminarily clarify the mechanism, providing theoretical guidance for the development of grape fruit bags. 【Method】The experimental materials were five-year-old vines of ‘Kyoho’ grape using ‘Beta’ as rootstock, bagged with red, green, blue and white fruit paper bags 30 days after fruit setting, respectively, and no bagging as control. The berries were sampled every eight days from bagging to full mature stage. The fruit bag transmission spectrum analysis was tested with StellarNet® Black-Comet Spectrometers. Anthocyanin content in fruit peel was measured by HPLC. The expression of anthocyanin biosynthesis pathway structural genes VvCHS, VvLDOX, VvUFGT, and regulatory gene VvmybA1 and light signal transcription factor VvHY5 were analyzed by real-time PCR. 【Result】Red bag, green bag and blue bag had selective permeability in red, green and blue band, while white bag had no selective permeability for light quality. Different color fruit bags significantly affected grape anthocyanin biosynthesis. Red bag, green bag and blue bag treatments significantly delayed grape variation, and delayed anthocyanin accumulation, but anthocyanin contents in blue bag and white bag treatments were higher than the control at last. RT-PCR analysis showed that the expression of VvmybA1, VvCHS, VvLDOX and VvUFGT increased first and then decreased, which was consistent with anthocyanin accumulation. Different color fruit bag treatments delayed the expression increase of VvmybA1, VvCHS, VvLDOX and VvUFGT at the early stage of fruit ripening and also delayed their expression decrease at the late stage of fruit ripening. Their expression contents were higher in control and white bag treatment, followed by blue bag, green bag and red bag treatments before the expression peaks, while after the expression peaks, their expressions in control were lower than blue bag, white bag, green bag and red bag treatments. In anthocyanin rapid accumulation period and the late stage of fruit ripening, VvHY5 had two expression peaks, which was consistent with the variation patterns of anthocyanin accumulation and the expression of VvmybA1 during fruit ripening. The induction ability of different color fruit bags on VvHY5 expression was different, like that the blue paper bag was the strongest and the red paper bag was the worst.【Conclusion】Blue paper bag is of benefit to grape anthocyanin biosynthesis, while red paper bag is poor. The regulation of anthocyanin accumulation in grape by different color fruit bags is probably through the light signal transcription factor VvHY5, and then regulated the expression of anthocyanin biosynthesis pathway regulatory gene VvmybA1 and structural genes VvCHS, VvLDOX and VvUFGT.

Key words: grape, fruit bagging, light quality, anthocyanin, gene expression

[1]    Liang Z C, Sang M, Fan P, Wu B H, Wang L J, Yang S H, Li S H. CIELAB coordinates in response to berry skin anthocyanins and their composition in vitis. Journal of Food Science, 2011, 76(3): 490-497.
[2]    孙欣, 韩键, 房经贵, 上官凌飞, 王西成, 宋长年, 李晓颖. 葡萄浆果着色分子机理的重要研究进展. 植物生理学报, 2012, 48(4): 333-342.
Sun X, Han J, Fang J G, ShangGuan L F, Wang X C, Song C N, Li X Y. Important research progress of coloring molecular mechanisms in grape berry. Plant Physiology Journal, 2012, 48(4): 333-342. (in Chinese)
[3]    Yang Y, Labate J A, Liang Z, Cousins P, Prins B, Preece J E, Aradhya M, Zhong G Y. Multiple loss-of-function 5-O-glucosyltransferase alleles revealed in Vitis vinifera, but not in other vitis species. Theoretical and Applied Genetics, 2014, 127(11): 2433-2451.
[4]    Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biology, 2011, 11: 179.
[5]    Rinaldo A R, Cavallini E, Jia Y, Moss S M A, McDavid D A J, Hooper L C, Robinson S P, Tornielli G B, Zenoni S, Ford C M, Boss P K, Walker A R. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, 2015, 169(3): 1897-1916.
[6]    Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. In vivo grapvine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant Journal, 2011, 67: 960-970.
[7]    He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15: 9057-9091.
[8]    李灿婴, 常永义, 商佳胤, 葛永红. 套袋对红地球葡萄果皮色素和果实品质的影响. 中外葡萄与葡萄酒, 2006, 2(9): 9-12.
Li C Y, Chang Y Y, Shang J Y, Ge Y H. Effect of bagging on pigment of berry skin and fruit quality in Red Globe grape. Sino-Overseas Grapevine & Wine, 2006, 2(9): 9-12. (in Chinese)
[9]    成果, 陈立业, 王军, 陈武, 张振文. 2种整形方式对‘赤霞珠’葡萄光合特性及果实品质的影响. 果树学报, 2015, 32(2): 215-224.
Cheng G, Chen L Y, Wang J, Chen W, Zhang Z W. Effect of training system on photosynthesis and fruit characteristics of Cabernet Sauvignon. Journal of Fruit Science, 2015, 32(2): 215-224. (in Chinese)
[10]   王枝翠, 孟祥云, 冯建荣, 潘立忠, 刘怀锋. 不同颜色覆网对红地球葡萄(Vitis vinifera L.)锦葵色素积累的影响. 石河子大学学报(自然科学版), 2013, 31(3): 276-282.
Wang Z C, Meng X Y, Feng J R, Pan L Z, Liu H F. Effect of color netting on malvidin pigment accumulation of red globe grape (Vitis vinifera L.). Journal of Shihezi University (Natural Science Edition), 2013, 31(3): 276-282. (in Chinese)
[11]   孟祥云, 王枝翠, 王雨歌, 樊新民, 赵宝龙, 刘怀锋. 地面遮阴对新疆红地球葡萄果实着色的影响. 果树学报, 2014, 31(1): 60-65.
Meng X Y, Wang Z C, Wang Y G, Fan X M, Zhao B L, Liu H F. Effects of terrestrial shading on the berry coloring of ‘Red Globle’ grape (Vitis vinifera L.) in Xinjiang. Journal of Fruit Science, 2014, 31(1): 60-65. (in Chinese)
[12]   马瑞娟, 张斌斌, 张春华, 蔡志翔, 颜志梅. 采取除袋铺设反光膜对桃果实着色及相关基因表达的影响. 园艺学报, 2015, 42(11): 2123-2132.
Ma R J, Zhang B B, Zhang C H, Cai Z X, Yan Z M. Effect of bag removing with reflective film mulching before harvest on fruit coloration and expression of anthocyanin related genes in peach. Acta Horticulturae Sinica, 2015, 42(11): 2123-2132. (in Chinese)
[13]   赵海亮, 赵文东, 孙凌俊, 高圣华, 马丽. 补光对延迟栽培‘巨峰’葡萄生长发育及光合荧光特性的研究. 中国农学通报, 2015, 31(1): 99-103.
Zhao H L, Zhao W D, Sun L J, Gao S H, Ma L. Study on supplemental lighting on the growing development and photosynthetic fluorescence characteristics of ‘Kyoho’ grape under delayed cultivation. Chinese Agricultural Science Bulletin, 2015, 31(1): 99-103. (in Chinese)
[14]   陈强, 刘世琦, 张自坤, 崔慧茹, 郝树芹, 刘忠良. 不同LED光源对番茄果实转色期品质的影响. 农业工程学报, 2009, 25(5): 156-161.
Chen Q, Liu S Q, Zhang Z K, Cui H R, Hao S Q, Liu Z L. Effect of different light emitting diode sources on tomato fruit quality during color-changed period. Transactions of the CSAE, 2009, 25(5): 156-161. (in Chinese)
[15]   刘林, 许雪峰, 王忆, 李天忠, 韩振海. 不同反光膜对设施葡萄果实糖分代谢与品质的影响. 果树学报, 2008, 25(2): 178-181.
Liu L, Xu X F, Wang Y, Li T Z, Han Z H. Effect of different reflecting films on berry quality and sucrose metabolism of grape in greenhouse. Journal of Fruit Science, 2008, 25(2): 178-181. (in Chinese)
[16]   刘帅, 袁登荣, 王志润, 辛守鹏, 陶建敏. 选择性光技术对‘阳光玫瑰’葡萄光合特性和果实品质的影响. 果树学报, 2016, 33(2): 187-195.
Liu S, Yuan D R, Wang Z R, Xing S P, Tao J M. Effects of pink fluorescent filming and pink netting on the photosynthetic characteristics and fruit quality of ‘Shine Muscat’ grape. Journal of Fruit Science, 2016, 33(2): 187-195. (in Chinese)
[17]   Dussi M C, Sugar D, Wrolstad R E. Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. Journal of the American Society for Horticultural Science, 1995, 120(5): 785-789.
[18]   张斌斌, 马瑞娟, 蔡志翔, 张春华, 颜志梅. 采前套袋微环境变化对桃果实品质的影响. 植物生理学报, 2015, 51(2): 233-240.
Zhang B B, Ma R J, Cai Z X, Zhang C H, Yan Z M. Effects of preharvest micro-environment inside baggs on peach fruit quality. Plant Physiology Journal, 2015, 51(2): 233-240. (in Chinese)
[19]   Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annual review of genetics, 2004, 38: 87-117.
[20]   Rizzini L, Favory J J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins G I, Ulm R. Perception of UV-B by the Arabidopsis UVR8 protein. Science, 2011, 332(6025): 103-106.
[21]   Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory swich for light control of Arabidopsis development. Molecular Cell, 1998, 1: 213-222.
[22]   Schulze-Lefert P, Becker-André M, Schulz W, Hahlbrock K, Dangl J. Functional architecture of the light- responsive chalcone synthase promoter from parsley. Plant Cell, 1989, 1: 707-714.
[23]   Gollop R, Even S, Colova-Tsolova V, Perl A. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. Journal of Experimental Botany, 2002, 53(373): 1397-1409.
[24]   Gollop R, Farhi S, Perl A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Science, 2001, 161: 579-588.
[25]   Lau O S, Deng X W. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in plant science, 2012, 17(10): 584-593.
[26]   王宝亮, 王海波, 王孝娣, 郑晓翠, 史祥宾, 刘凤之. 我国葡萄套袋技术研究进展. 北方园艺, 2014, 6: 188-190.
Wang B L, Wang H B, Wang X D, Zheng X C, Shi X B, Liu F Z. Research progress of grape fruit bagging technique in China. Northern Horticulture, 2014, 6: 188-190. (in Chinese)
[27]   Livak J, Schmitten T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
[28]   徐凯, 郭延平, 张上隆, 戴文圣, 符庆功. 不同光质膜对草莓果实品质的影响. 园艺学报, 2007, 34(3): 585-590.
Xu K, Guo Y P, Zhang S L, Dai W S, Fu Q G. Effect of light quality on the fruit quality of ‘Toyonoka’ strawberry (Fragaria × ananassa Duch.). Acta Horticulturae Sinica, 2007, 34(3): 585-590. (in Chinese)
[29]   马策, 肖长城, 胡红菊, 黄小三, 张绍玲, 吴俊. 不同颜色果袋对‘云红梨2号’果皮色泽形成的影响. 应用生态学报, 2014, 25(3): 813-818.
Ma C, Xiao C C, Hu H J, Huang X S, Zhang S L, Wu J. Effect of bagging with different colors on the fruit coloration of ‘Yunhongli No.2’ pear. Chinese Journal of Applied Ecology, 2014, 25(3): 813-818. (in Chinese)
[30]   程建徽, 魏灵珠, 雷鸣, 郑婷, 吴江. 不同滤过膜袋对‘红地球’葡萄果实品质的影响. 果树学报, 2015, 32(1): 87-93.
Cheng J H, Wei L Z, Lei M, Zheng T, Wu J. Influences of different light filter film bags on berry quality in ‘Red Globe’. Journal of Fruit Science, 2015, 32(1): 87-93. (in Chinese)
[31]   赵文东, 郭修武, 王欣欣, 孙凌俊, 赵海亮, 高圣华, 马丽. 光质对延迟栽培巨峰葡萄果实品质的影响. 中国果树, 2011(1): 20-22.
Zhao W D, Guo X W, Wang X X, Sun L J, Zhao H L, Gao S H, Ma L. Effect of light quality on berry quality in ‘Kyoho’ under delayed cultivation. China Fruits, 2011(1): 20-22. (in Chinese)
[32]   Feinbaum R L, Ausubel F M. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Molecular General Genetics, 1991, 226: 449-456.
[33]   Schulze-Lefert P, Dangl J L, Becker-André M, Hahlbrock K, Schulz W. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO Journal, 1989, 8: 651-656.
[34]   Kaiser T, Emmler K, Kretsch T, Weisshaar B, Schäfer E, Batschauer A. Promoter elements of the mustard CHS1 gene sufficient for light regulation in transgenic plants. Plant Molecular Biology, 1995, 28: 219-229.
[35]   Gollop R, Farhi S, Perl A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Science, 2001, 161: 579-588.
[36]   Boss P K, Davies C, Robinson S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 1996, 32: 565-569.
[37]   Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 2002, 215(6): 924-933.
[38]   Endt D V, Kijne J W, Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry, 2002, 61(2): 107-114.
[39]   Chattopadhyay S, Ang L H, Puente P, Deng X W, Wei N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 1998, 10(5): 673-683.
[40]   Azuma A, Fujii H, Shimada T, Yakushiji H. Microarray analysis for the screening of genes inducible by light or low temperature in post-veraison grape berries. The Horticultural Journal, 2015, 84(3): 214-226.
[41]   李慧峰, 王小非, 冉昆, 何平, 王海波, 李林光. 苹果光响应转录因子MdHY5表达及蛋白互作分析. 中国农业科学, 2014, 47(21): 4318-4327.
Li H F, Wang X F, Ran K, He P, Wang H B, Li L G. Expression and protein interaction analysis of light responsive bZIP transcription factor MdHY5. Scientia Agricultura Sinica, 2014, 47(21): 4318-4327. (in Chinese)
[42]   周波, 王宇, 孙梅, 李玉花. 津田芜菁bZIP蛋白HY5 cDNA的克隆及表达特性. 分子植物育种, 2008, 6(1): 59-64.
Zhou B, Wang Y, Sun M, Li Y H. cDNA cloning of bZIP protein HY5 in Tsuda Turnip and its transcript expression analysis. Molecular Plant Breeding, 2008, 6(1): 59-64. (in Chinese)
[43]   Shin D H, Choi M, Kim K, Bang G, Cho M, Choi S B, Choi G, Park Y I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters, 2013, 587(10): 1543-1547.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[7] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[8] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[11] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[12] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[13] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[14] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[15] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!