Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3754-3768.doi: 10.3864/j.issn.0578-1752.2016.19.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Isolation and Biological Properties of Endophytic Diazotrophs from Rice and Their Influences on Rice Seedling Cd Accumulation

YUAN Mei1, TAN Shi-juan2, SUN Jian-guang1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of  Microbial Resources, Ministry of Agriculture, Beijing 100081
    2Guiyang Agricultural Bureau, Chenzhou 424400, Hunan
  • Received:2016-04-13 Online:2016-10-01 Published:2016-10-01

Abstract: Objective】The objective of this study is to isolate, identify and analyze phylogenetics of endophytic diazotrophs from rice planted in Hunan province, test the biological characteristics of the isolates, and to explore the influences of diazotroph inoculation on rice seedlings Cd accumulation. Method】Surface sterilization and low nitrogen medium were used to isolate endophytic diazotrophs. nifH detection was conducted based on PCR amplification to confirm the isolates as nitrogen-fixing bacteria. 16S rRNA was amplified with PCR, blasted in EzTaxon after sequencing, and analyzed with Clustalx-MEGA to make phylogenetic tree. Greenhouse trials were conducted to investigate the influence of diazotroph inoculation on rice seedling Cd accumulation. 【Result】Nineteen endophytic diazotrophs were isolated from root, stem and leaf of 8 rice samples. These 19 strains phylogenetically belong to 4 genus 13 species of Bacillus aryabhattai, B. cereus, B. idriensis, B. sindicus, B. licheniformis, B. megaterium, B. methylotrophicus, B. subtilis, B. tequilensis, Brevibacterium. halotolerans, Fictibacillus phosphorivorans, Paenibacillus barcinonensis, P. lautus. Biological tests showed that about 1/3 of the 19 strains produce protease and cellulose, grow well at 48℃, form spores well with percentage 60%-90%, produce alkali with final pH 8.5-9.0. About 1/6 of the 19 strains are antagonistic against plant pathogenic Rhizoctonia solani ACCC36246, Fusarium graminearum ACCC36249 and Fusarium sporotrichioides ACCC37402 with rate of 42%-55%. About 2/3 of the 19 strains showed sensitive to antibiotics and resistant to fungicide. Four representative strains of the 19 could utilize 7 of the 78 carbon sources, sodium lactate, sucrose, dextrose, glycerol, malic acid, alanine and glucuronic acid amide. Greenhouse trials showed that 6 of the 19 strains promoted rice seedling Cd absorption with increase of 6.41%-38.45%, and other 13 strains decreased rice seedling Cd absorption with 2.06%-34.46% compared with control.Conclusion】Nineteen endophytic diazotrophs were isolated from rice planted in Hunan. These 19 strains phylogenetically belong to 4 genus 13 species of Bacillus, Brevibacterium, Fictibacillus and Paenibacillus. Partial strains produce protease and cellulose, grow well at 48℃, form spores well, antagonistic against plant pathogenic Rhizoctonia solani, Fusarium graminearum and Fusarium sporotrichioides, have good prospects of application. Inoculation of diazotroph can significantly affect rice seedling Cd absorption. The results suggest that application of microbial method to control paddy Cd is a very worthwhile pathway.

Key words: rice, endophytic diazotrophs, biological property, Cd

[1]    Mano H, Morisaki H. Endophytic bacteria in the rice plant. Microbes and environments, 2008, 23(2): 109-117.
[2]    李龚程, 张仕颖, 肖炜, 龙智勇, 张乃明. 水稻中内生菌研究进展. 中国农学通报, 2015, 31(12): 157-162.  
Li G C, Zhang S Y, Xiao W, Long Z Y, Zhang N M. Research progress on endophytes in rice. Chinese Agricultural Science Bulletin, 2015, 31(12): 157-162. (in Chinese)
[3]    Wang M E, Chen W P, Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 2016, 144: 346-351.
[4]    Liu Y B, Xia T F, Baveye P C, Zhu J M, Ning Z P, Li H J. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicology Environmental Safety, 2015, 112: 122-131.
[5]    尹艺, 赵颖, 马莲菊, 卜宁. 碱蓬内生真菌对镉胁迫水稻幼苗生长及生理生化指标的影响. 贵州农业科学, 2014, 42(3): 23-26.
Yi Y, Zhao Y, Ma L J, Bu N. Effects of endophyte isolated from Suaeda salsa on growth and physiclogical and biological indexes of rice seedlings. Guizhou Agricultural Sciences, 2014, 42(3): 23-26. (in Chinese)
[6]    Barraquio W l, Revilla L, Ladha J k. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant and Soil, 1997, 194: 15-24.
[7]    Zhang G X, Peng G X, Wang E T, Yan H, Yuan Q H, Zhang W, Lou X, Wu H, Tan Z Y. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Archives of Microbiology, 2008, 189: 431-439.
[8]    Chaudhary H J, Peng G X, Hu M, He Y M, Yang L J, Luo Y, Tan Z Y. Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microbial Ecology, 2012, 63: 813-821.
[9]    Govindarajan M, Balandreau J, Kwon S W, Weon H Y, Lakshminarasimhan C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 2008, 55(1): 21-37.
[10]   李倍金, 罗明, 周俊, 孔德江, 张铁明. 几种禾草内生固氮菌的分离及固氮活性测定. 草业学报, 2008, 17(5): 37-42.
Li B J, Luo M, Zhou J, Kong D J, Zhang T M. Isolation of endophytic diazotrophic bacteria from several gramineae grasses and determination of their nitrogenase activity. Acta Prataculturae Sinica, 2008, 17(5): 37-42. (in Chinese)
[11]   孙建光, 张燕春, 徐晶, 胡海燕. 高效固氮芽孢杆菌选育及其生物学特性研究. 中国农业科学, 2009, 42(6): 2043-2051.
Sun J G, zhang Y C, Xu J, Hu H Y. Isolation and biological characteristic investigation on efficient nitrogen-fixing bacilli. Scientia Agricultura Sinica,2009, 42(6): 2043-2051. (in Chinese)
[12]   秦宝军, 罗琼, 高淼, 胡海燕, 徐晶, 周义清, 孙建光. 小麦内生固氮菌及其ACC脱氨酶测定. 中国农业科学, 2012, 45(6): 1066-1073.
Qin B J, Luo Q, Gao M, Hu H Y, Xu J, Zhou Y Q, Sun J G. Isolation of wheat endophytic diazotrophs and determination of 1-aminocyclopropane-1-carboxylate deaminase. Scientia Agricultura Sinica, 2012, 45(6): 1066-1073. (in Chinese)
[13]   孙建光, 徐晶, 胡海燕, 张燕春, 刘君, 王文博, 孙燕华. 中国十三省市土壤中非共生固氮微生物菌种资源研究. 植物营养与肥料学报, 2009, 15(6): 1450-1465.
Sun J G, Xu J, Hu H Y, Zhang Y C, Liu J, Wang W B, Sun Y H. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1450-1465. (in Chinese)
[14]   Gao M, Zhou J J, Wang E T, Chen Q, Xu J, Sun J G. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. Journal of Integrative Agriculture,2015, 14(9): 1855-1863.
[15]   孙建光, 罗琼, 高淼, 胡海燕, 徐晶, 周义清. 小麦、水稻、玉米、白菜、芹菜内生固氮菌及其系统发育研究. 中国农业科学, 2012, 45(7): 1303-1317. 
Sun J G, Luo Q, Gao M, Hu H Y, Xu J, Zhou y Q. Isolation and phylogeny of nitrogen-fixing endophytic bacteria in wheat, rice, maize, Chinese cabbage and celery. Scientia Agricultura Sinica, 2012, 45(7): 1303-1317. (in Chinese)
[16]   陈倩, 高淼, 胡海燕, 徐晶, 周义清, 孙建光. 一株拮抗病原真菌的固氮菌Paenibacillus sp. GD812. 中国农业科学, 2011, 44(16): 3343-3350.
Chen Q, Gao M, Hu H Y, Xu J, Zhou Y Q, Sun J G. A nitrogen-fixing bacterium Paenibacillus sp. GD812 antagonistic against plant pathogenic fungi. Scientia Agricultura Sinica, 2011, 44(16): 3343-3350. (in Chinese)
[17]   Saharan B S, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Science and Medical Research, 2011, 2011: LSMR-21.
[18]   Stone J K, Bacon C W, White J F. An overview of endophytic microbes: endophytism defined. Microbial endophytes, 2000, 3: 29-33.
[19]   Kloeppe J W, Rodriguez-Kabana R, Zehnder G W, Murphy J F, Sikora E, Fernández C. Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 1999, 28(1): 21-26.
[20]   Chaudhry V, Baindara P, Pal V K, Chawla N, Patil P B, Korpole S. Methylobacterium indicum sp. nov., a facultative methylotrophic bacterium isolated from rice seed. Systematic and Applied Microbiology, 2016, 39: 25-32.
[21]   Lin L, Wei C, Chen M, Wang H, Li Y, Li Y, YANG L, AN Q. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Standards in Genomic Sciences, 2015, 10: 22.
[22] Chung E J, Hossain1 M T, Khan1 AQ, Kim K H, Jeon C O, Chung Y R. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathology Journal,2015, 31(2): 152-164.
[23]   Zhang X X, Gao J S, Cao Y H, Sheirdil R A, Wang X C, Zhang L. Rhizobium oryzicola sp. nov., potential plantgrowth- promoting endophytic bacteria isolated from rice roots. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 2931-2936.
[24]   王秀呈, 曹艳花, 唐雪, 马晓彤, 高菊生, 张晓霞. 水稻内生固氮菌Herbaspirillum seropedicae DX35的筛选及其促生特性. 微生物学报, 2014, 54(3): 292-298.
Wang X C, Cao Y H, Tang X, Ma X T, Gao J S, Zahng X X. Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35. Acta Microbiologica Sinica,2014, 54(3): 292-298. (in Chinese)
[25]   Ji S H, Gururani M A, Chuna S C. Isolation and characterization of plant growth promoting endophyticdiazotrophic bacteria from Korean rice cultivars. Microbiological Research, 2014, 169: 83-98.
[26]   Jha B, Thakur M C, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European journal of soil biology, 2009, 45: 62-72.
[27]   Gimenez C, Cabrera R, Reina M, González-Coloma A. Fungal endophytes and their role in plant protection. Current Organic Chemistry, 2007, 11(8): 707-720.
[28]   Su Z Z, Mao L J, Li N, Feng X X, Yuan Z L, Wang L W, Lin F C, Zhang C L. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PloS one, 2013, 8(4): e61332.
[29]   杨海莲, 孙晓璐, 宋未. 植物根际促生细菌和内生细菌的诱导抗病性的研究进展. 植物病理学报, 2000, 30(2): 106-110.
Yang H L, Sun X L, SONG W. Current development on induced resistance by plant growth promoting and endophytic bacteria. Acta Phytopathologica Sinica, 2000, 30(2): 106-110. (in Chinese)
[30]   陈夕军, 胡长松, 童蕴慧, 纪兆林, 徐敬友. 水稻内生枯草芽孢杆菌对稻瘟病菌和稻恶苗病菌的抑制作用. 中国生物防治, 2008, 24(4): 339-344.
Chen X J, Hu C S, Tong Y H, Ji Z L, Xu J Y. Inhibition of rice endophytic Bacillus subtilis on Magnaporthe grisea and Gibberella fujikuroi. Chinese Journal of Biological Control, 2008, 24(4): 339-344. (in Chinese)
[31]   孙建光, 胡海燕, 刘君, 陈倩, 高淼, 徐晶, 周义清. 农田环境中固氮菌的促生潜能与分布特点研究. 中国农业科学, 2012, 45(8): 1532-1544. 
Sun J G, Hu H Y, Liu J, Chen Q, Gao M, Xu J, Zhou Y Q. Growth promotion potential and distribution features of nitrogen- fixing bacteria in field environments. Scientia Agricultura Sinica, 2012, 45(8): 1532-1544. (in Chinese)
[32]   Wang w Z, Xu W H, Zhou K, Xiong Z T. Research progressing of present contamination of Cd in soil and restoration method. Wuhan University Journal of Natural Sciences,2015, 20(5): 430-444.
[33]   苏慧, 魏树和, 周启星. 镉污染土壤的植物修复研究进展与展望. 世界科技研究与发展, 2013, 35(3): 315-319.
Sun H, Wei S H, Zhou Q X. Advances in phytoremediation of cadmium contaminated soil. World Sci-Tec Research Development,2013, 35(3): 315-319. (in Chinese)
[34]   李廷强, 董增施, 姜宏, 李冰, 杨肖娥. 东南景天对镉-苯并[a]芘复合污染土壤的修复效果. 浙江大学学报 (农业与生命科学版) , 2011, 37(4): 465-472.
Li T Q, Dong Z S, Jiang H, Li B, Yang X E. Remediation efficiency of Ca-B[a] P combined polluted soil by Sedum alfredii. Journal of Zhejiang University (Agricultural & Life Science), 2011, 37(4): 465-472. (in Chinese)
[35]   唐皓, 李廷轩, 张锡洲, 余海英, 陈光登. 水稻镉高积累材料不同生育期镉积累变化特征研究. 农业环境科学学报, 2015, 34(3): 471-477.  
Tang H, Li T X, Zhang X Z, Yu H Y, Chen G D. Cadmium accumulation in high cadmium-accumulating rice cultivars at different growth stages. Journal of Agro-Environment Science, 2015, 34(3): 471-477.(in Chinese)
[36]   韩君, 梁学峰, 徐应明, 徐愿坚, 雷勇, 蒋荣辉. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响. 环境科学学报, 2014, 34(11): 2853-2860.
Han J, Liang X F, Xu Y M, Xu Y J, Lei Y, Jiang R H. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen, phosphorus and enzymatic activities. Acta Scientiae Circumstantiae,2014, 34(11): 2853-2860. (in Chinese)
[37]   Bian R J, Chen D, Liu X Y, Cui L Q, Li L Q, Pan G X, Xie D, Zheng J W, Zhang X H, Zheng J F, Chang A. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 2013, 58: 378-383.
[38]   孙约兵, 徐应明, 史新, 王林, 梁学峰. 海泡石对镉污染红壤的钝化修复效应研究. 环境科学学报, 2012, 32(6): 1465-1472.
Sun Y B, Xu Y M, Shi X, Wang L, Liang X F. The effects of sepiolite on immobilization remediation of Cd contaminated red soil. Acta Scientiae Circumstantiae, 2012, 32(6): 1465-1472.(in Chinese)
[39]   Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 2009, 77: 153-160.
[40]   Ullah A, Sun H, Munis M, Fahad S, Yang X Y. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 2015, 117: 28-40.
[41]   Aryal M, Liakopoulou-Kyriakides M. Bioremoval of heavy metals by bacterial biomass. Environmental Monitoring and Assessment,2015, 187: 4173.
[42]   Sangthong C, Setkit K, Prapagdee B. Improvement of cadmium phytoremediation after soil inoculation with a cadmium- resistant Micrococcus sp. Environmental Science and Pollution Research, 2016, 23(1): 756-764.
[43]   Prapagdee B, Khonsue N. Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: a field trial experiment. International Journal of Environmental Sciences and Technology, 2015, 12: 3843-3852.
[44]   刘莉华, 刘淑杰, 陈福明, 杨小龙, 杨春平, 赵晶晶, 吴秉奇. 两株镉抗性奇异变形杆菌对龙葵修复镉污染土壤的强化作用. 环境工程学报, 2013, 7(10): 4109-4115.
Liu L H, Liu S J, Chen F M, Yang X L, Yang C P, Zhao J J, Wu B Q. Efects of two cadmium-resistant strains of Proteus mirabilis on enhanced remediation efficiency of Solanum nigrum L. in serious cadmium polluted soil. Chinese Journal of Environmental Engineering, 2013, 7(10): 4109-4115. (in Chinese)
[45]   江春玉, 盛下放, 何琳燕, 马海艳, 孙乐妮, 张艳峰. 一株铅镉抗性菌株WS34的生物学特性及其对植物修复铅镉污染土壤的强化作用. 环境科学学报, 2008, 28(10): 1961-1968.
Jiang C Y, Sheng X F, He L Y, Ma H Y, Sun L N, Zhang Y F. Isolation and characteristics of heavy metal-resistant strain WS34 and its effects on the phytoremediation of soils contaminated with lead and cadmium. Acta Scientiae Circumstaniae, 2008, 28(10): 1961-1968. (in Chinese)
[46]   胡振琪, 杨秀红, 高爱林, 危向峰. 镉污染土壤的菌根修复研究. 中国矿业大学学报, 2007, 36(2): 237-240.
Hu Z Q, Yang X H, Gao A L, Wei X F. Remediation of mycorrhezae on Cd contaminated soil. Journal of China University of Mining & Technology, 2007, 36(2): 237-240. (in Chinese)
[47]   马文亭, 滕应, 凌婉婷, 李振高, 吴龙华, 骆永明. 里氏木霉FS10-C对伴矿景天吸取修复镉污染土壤的强化作用. 土壤, 2012, 44(6): 991-995.
Ma W T, Teng Y, Ling W T, Li Z G, Wu L H, Luo Y M. Enhancing remediation of Sedum plumbizincicola in cadmium contaminated soils by Trichoderma reesei FS10-C. Soils, 2012, 44(6): 991-995. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!