Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (7): 1267-1276.doi: 10.3864/j.issn.0578-1752.2016.07.005


Effects of Plant Growth Regulators S3307 and DTA-6 on Physiological Metabolism and GmAC Gene Expression in Soybean

SUN Fu-dong, FENG Nai-jie, ZHENG Dian-feng, CUI Hong-qiu, LIU Chun-juan, HE Tian-ming, ZHAO Jing-jing   

  1. The Chemical Control Room, College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Heilongjiang, Daqing 163319, Heilongjiang
  • Received:2015-09-25 Online:2016-04-01 Published:2016-04-01

Abstract: 【Objective】 Pods are important source organs for temporary reserve photosynthate in soybean grain growth progress. It is a key factor of pods abscission to restrict soybean production. In order to investigate the internal mechanism of chemical control technology to improve soybean yield, this study used two plant growth regulators to discover the different effects on physiological metabolism in pods and the expression of abscission cellulose enzyme gene (GmAC) in the abscission zone. This study will provide a theoretical basis for high-yield, high-quality and high-efficiency in soybean production.【Method】Field experiments were conducted with soybean Kangxian 6. We sprayed growth promoter regulator 2-N,N-diethylamino ethyl caproate (DTA-6) 60 mg·L-1 and the retardant regulator uniconazole (S3307) 50 mg·L-1 or water during R1 growth stage in 2012 and 2013. The pods of each treatment were used to examine pod physiological indicators including soluble sugar, sucrose, starch, MDA, POD and AC on 35, 42, 49 and 56 days after spraying in each treatment. Abscission zone tissues between stem and soybean pods were cut on the 5th day after treatment, to determinate the expression of cellulose enzyme gene (GmAC) using applied RT-PCR method. 【Result】(1) Compared with the control, DTA-6 and S3307 treatments had significantly lower soluble sugar, except on 35 d after spraying where the DTA-6 treatment sugar content was higher. The content of sucrose in pods decreased after spraying DTA-6 and S3307 from the 35 d to the 49 d, and increased on the 56 d after spraying. Starch increased in most of treatment-spray time conditions except in the S3307 treatment on the 42 d after spraying. (2) The content of MDA decreased after 35, 49 and 56 d after spraying. The activity of POD increased after 35 d, 42 d and 56 d after spraying. The activity of AC decreased on the 35 d, 49 d and 56 d after spraying S3307 and decreased from 42 d to 49 d after spraying DTA-6. (3) The relative expression of GmAC in abscission zone after spraying DTA-6 was down-regulated, but the relative expression after spraying of S3307 was up-regulated. (4) DTA-6 and S3307 treatments effectively improved yield properties such as the number of pods per plant, grains per pod and one-hundred grain weight, compared with control. The yield improved by 6.2% and 1.4% in 2012, and 4.8% and 5.3% in 2013. 【Conclusion】Our observations suggest that DTA-6 and S3307 increased transportation and accumulation of assimilate in pods, enhanced the antioxidant enzyme, reduced membrane lipid peroxidation products, decreased the key enzyme activity of abscission pods, benefited the pods, and ultimately improved the production of soybean. The relative expression of GmAC was down-regulated in the treatment with DTA-6, and DTA-6 treatment was better.

Key words: soybean, pod, plant growth regulator, physiological metabolism, gene expression

[1]    张振华, 刘志民. 我国大豆供需现状与未来十年预测分析. 大豆科技, 2009, 4: 16-21.
Zhang Z H, Liu Z M. China's soybean supply and demand situation and forecast analysis in the next decade. Soybean Science and Technology, 2009, 4: 16-21. (in Chinese)
[2]    盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题. 中国工程科学, 2003, 5(5): 1-6.
Gai J Y. Expanding and enhancing the research allocation on soybean breeding and genetics for the establishment of market supply based on domestic production. Engineering Science, 2003, 5(5): 1-6. (in Chinese)
[3]    赵双进, 唐晓东, 赵鑫, 冯燕, 赵聪聪, 张孟臣. 大豆开花落花及时空分布的观察研. 中国农业科学, 2013, 46(8): 1543-1554.
Zhao S J, Tang X D, Zhao X, Feng Y, Zhao C C, Zhang M C. Observation and research on the temporal and spatial distribution of flowering and flower dropping of soybean. Scientia Agricultura Sinica, 2013, 46(8): 1543-1554. (in Chinese)
[4]    Cheng Y Q, Liu J F, Yang X D, Ma R, Liu C M, Liu Q. RNA-seq analysis reveals ethylene-mediated reproductive organ development and abscission in soybean (Glycine max L.). Plant Molecular Biology Reporter, 2012, 31(3): 607-619.
[5]    Heitholt J J, Egli D B, Leggett J E. Role of assimilate and carbon-14 photosynthate partitioning in soybean reproductive abortions. Crop Science, 1986, 26: 999-1004.
[6]    Ackerson R C. Regulation of soybean embryogenesis by abscisic acid. Journal of Experimental Botany, 1984, 35(3): 403-413.
[7]    Nonokawa K, Nakajima T, Nakamura T, Kokubun M. Effect of synthetic cytokinin application on pod setting of individual florets within raceme in soybean. Plant Production Science, 2012, 15(2): 79-81.
[8]    顾万荣, 李召虎, 翟志席, 段留生, 张明才. DCPTADTA-6对大豆和玉米苗期叶片内源激素与氧自由基代谢的影响. 植物遗传资源学报, 2009, 10(2): 300-305.
Gu W R, Li Z H, Zhai Z X, Duan L S, Zhang M C. Effects of DCPTA and DTA-6 on the endogenous hormone and free radicals in corn and soybean seedling leaves. Journal of Plant Genetic Resources, 2009, 10(2): 300-305. (in Chinese)  
[9]    Trouverie J, Thevenot C, Rocher J P, Sotta B, Prioul J L. The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. Journal of Experimental Botany, 2003, 54(390): 2177-2186.
[10]   Bonghi C, Rascio N, Ramina A, Casadoro G. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Molecular Biology, 1992, 20(5): 839-848.
[11]   柴国华, 王成社, 黄晓刚, 刘永年. 逆境对大豆脱落纤维素酶基因时间表达模式的影响. 西北植物学报, 2006, 26(3): 442-446.
Chai G H, Wang C S, Huang X G, Liu Y N. Effects of adverse environments on temporal expression pattern of soybean abscission cellulose gene. Acta Botanica Boreale-Occidentalia Sinica, 2006, 26(3): 442-446. (in Chinese)
[12]   宋春艳, 冯乃杰, 郑殿峰, 张晓艳, 宋莉萍, 陆旺. 植物生长调节剂对大豆叶片碳代谢相关生理指标的影响. 干旱地区农业研究, 2011, 29(3): 91-95.
Song C Y, Feng N J, Zheng D F, Zhang X Y, Song L P, Lu W. Effects of plant growth regulators (PGRs)on carbon metabolism related indicators in soybean leaves. Agricultural Research in the Arid Areas, 2011, 29(3): 91-95. (in Chinese)
[13]   冯乃杰, 祖伟, 孙聪姝, 梁喜龙, 杜吉到, 张玉先, 郑殿峰. 化控种衣剂提高大豆幼苗抗寒性的机理研究. 中国农业科学, 2008, 41(12): 4281-4286.
Feng N J, Zu W, Sun C Z, Liang X L, Du J D, Zhang Y X, Zheng D F. Mechanism of chemical control seed coating agent enhancing cold resistance of soybean seeding. Scientia Agricultura Sinica, 2008, 41(12): 4281-4286. (in Chinese)
[14]   Antos M. Abscission, total soluble sugars, and starch profiles within a soybean canopy. Agronomy Journal, 1984, 76(5): 715-719.
[15]   Kostenyuk I A, Zoń J, Burns J K. Phenylalanine ammonialyase gene expression during abscission in citrus. Physiologia Plantarum, 2002, 116(1): 106-112.
[16]   Tucker M L, Yang R. IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. AOB Plants, 2012, 2012(1): 462-465.
[17]   张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2001: 128-129.
Zhang Z L. Plant Physiology Experiment Instruction. Beijing:Higher Education Press, 2001: 128-129. (in Chinese)
[18]   刘祖祺, 张石城. 植物抗性生理学. 北京: 中国农业出版社, 1994.
Liu Z Q, Zhang S C. Resistance of Plant Physiology. Beijing: China Agriculture Press, 1994. (in Chinese)
[19]   郝建军, 刘延吉. 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 2001: 9-13.
Hao J J, Liu Y J. Plant Physiology Experiment Technology. Shenyang: Liaoning Science and Technology Press, 2001: 9-13. (in Chinese)
[20]   Li X, Lawas L M F, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha D K, Jagadish K S V. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell & Environment, 2015, 38(10): 2171-2192.
[21]   Xie P P, Deng J W, Zhang H M, Ma Y H, Cao D J, Ma R X. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicology & Environmental Safety, 2015, 122: 392-398.
[22]   韩秉进, 潘相文, 金剑, 王光华, 刘长江, 刘晓冰. 大豆植株性状相关性与产量回归分析. 中国生态农业学报, 2008, 16(6): 1429-1433.
Han B J, Pan X W, Jin J, Wang G H, Liu C J, Liu X B. Correlation and regression analysis of trait and yield of soybean. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1429-1433. (in Chinese)
[23]   Travaglia C, Cohen A C, Reinoso H, Castisso C, Bottini R.  Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. Journal of Plant Growth Regulation, 2007, 26(3): 285-289.
[24]   项洪涛, 孙巨峰, 冯乃杰, 杜吉到, 马凤鸣, 郑殿峰. SOD-MDTA-6Cc对马铃薯叶片碳代谢相关生理指标的影响. 干旱地区农业研究, 2014, 1: 166-170.
Xiang H T, Sun J F, Feng N J, Du J D, Ma F M, Zheng D F. Effects of SOD-M, DTA-6 and Cc on carbon metabolism of potato leaves. Agricultural Research in the Arid Areas, 2014, 1: 166-170. (in Chinese)
[25]   王艳杰, 郑殿峰, 张晓艳, 冯乃杰, 杜吉到, 李建英. DTA-6浸种对大豆苗期叶片碳代谢的影响. 安徽农学通报, 2007, 13(14): 80-81.
Wang Y J, Zheng D F, Zhang X Y, Feng N J, Du J D, Li J Y. Effects of soaking the seeds of DTA-6 on the carbon metabolison of soybean leaves. Anhui Agriculture Science Bulletin, 2007, 13(14): 80-81. (in Chinese)
[26]   王琰, 陈建文, 狄晓艳. 水分胁迫下不同油松种源SOD、POD、MDA及可溶性蛋白比较研究. 生态环境学报, 2011, 20(10): 1449-1453.
Wang Y, Chen J W, Di X Y.A comparative study on the SOD, POD, MDA and dissoluble protein of six provenances of Chinese pine (Pinus tabulaeformis Carr.) under water stress. Ecology and Environmental Sciences, 2011, 20(10): 1449-1453. (in Chinese)
[27]   赵莉, 潘远智, 朱峤, 岳静, 米仕洪. 6-BA、GA3和IBA对香水百合叶绿素含量及抗氧化物酶活性的影响. 草业学报, 2012, 21(5): 248-256.
Zhao L, Pan Y Z, Zhu Q, Yue J, Mi S H. Effects of 6-BA, GA3 and IBA on photosynthesis pigment content and related enzyme activities of Lilium casa blanca. Acta Prataculturae Sinica, 2012, 21(5): 248-256. (in Chinese)
[28]   Saibi W, Feki K, Mahmoud R B, Brini F. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 2015, 242: 1187-1194
[29]   Taylor J E, Whitelaw C A. Signals in abscission. New Phytology, 2001, 151: 323-340.
[30]   Hong S B, Sexton R, Tucker M L. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiology, 2000, 123(3): 869-882.
[31]   樊仙, 刘少春, 高欣欣, 刀静梅, 邓军. 甘蔗成熟期叶鞘纤维素酶活性对自然脱落的影响. 植物生理学报, 2013, 49(11): 1228-1232.
Fan X, Liu X C, Gao X X, Dao J M, Deng J.Effect of cellulose activity on abscission rate of sugarcane (Saccharum officinarum L.) leaf sheath in mature period. Plant Physiology Journal, 2013, 49(11): 1228-1232. (in Chinese)
[32]   宋莉萍, 刘金辉, 郑殿峰, 冯乃杰. 不同时期叶喷植物生长调节剂对大豆花荚脱落率及多聚半乳糖醛酸酶活性的影响. 植物生理学报, 2011, 47(4): 356-362.
Song L P, Liu J H, Zheng D F, Feng N J. Effects of different plant growth regulators on abscission rate and poly galacturonase activities of soybean flowers and pods by spraying in different stages. Plant Physiology Journal, 2011, 47(4): 356-362. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[6] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[9] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[10] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[11] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[12] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[13] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[14] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[15] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
Full text



No Suggested Reading articles found!