Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (6): 1152-1162.doi: 10.3864/j.issn.0578-1752.2016.06.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Ratios of Nitrate and Ammonium on the Dynamic Kinetic and Growth for Eriobotrya japonica Lindl. Seedlings

MA Jian, FAN Wei-guo   

  1. Guizhou University/Guizhou Fruits Engineering Technology Research Centre, Guiyang 550025
  • Received:2015-08-24 Online:2016-03-16 Published:2016-03-16

Abstract: 【Objective】 The effect of nitrate ( NO3--N ) and ammonium ( NH4+-N) on the growth and nitrogen absorption kinetics of loquat seedlings was studied to determine the absorption and utilization of nitrogen forms and to provide a scientific basis for the management of loquat. 【Method】 Taking loquat seedlings as materials and using the ion depletion method, the loquat seedlings roots of different nitrate and ammonium absorption kinetics parameters were tested. The yellow soil with pH at 7.35 was used as the cultivation medium, and five different ratios of nitrate and ammonium were designed. The effect of different ratios of nitrate and ammonium on the growth and the root morphology were studied. 【Result】 At different NH4+ and NO3- ion concentrations and ratios of ammonium nitrate in the nutrient solution, the regular pattern of the absorption of ammonium, nitrate and total nitrogen in the root system of loquat seedlings was followed with the Michaelis-Menten dynamic equation. No matter how the NH4+ and NO3- ion concentrations changed, the inherent potential absorption, affinity and roots of flow rate of loquat seedlings roots for NH4+ absorption were greater than NO3-. Under the pure nitrate supply conditions, loquat absorption of NO3- did not get the promotion. During the treatment supplied different proportions of ammonium nitrate, with the increasing of the proportion of ammonium, total nitrogen for loquat seedlings roots of maximum uptake rate (Imax) and the root of the velocity (α) increased significantly, while the Michaelis constant value (Km) significantly reduced. The Imax and α of these value declined and the Km values increased with the increasing in the proportion of nitrate. The ratio of increasing in the proportion of ammonium can promote roots of loquat seedlings for nitrogen absorption, but increasing in the proportion of nitrate absorption of loquat roots has an adverse effect. Ammonium is the preferred absorption nitrogen forms of loquat. Under soil culture conditions, applying different proportions of ammonium nitrate, plant height, basal diameter, dry weight biomass, shoot ratio, root morphology index and total leaf area of loquat seedlings were different significantly. The proportion of ammonium fertilizer significantly increased plant height, basal diameter, dry weight biomass, root to shoot ratio, total leaf area and total root length, total surface area, total volume, average diameter, total count the number and root apical fractal dimension. In 100% of ammonium treatment, the above indicators were the largest, but in 100% of nitrate treatment, the above indicators were the smallest. 【Conclusion】 In a single source of nitrogen and different ratios of ammonium nitrate mixture for nitrogen conditions, the maximum absorption rates of loquat seedlings roots on NH4+ were larger than NO3-, and the inflow rate of roots for NH4+ were faster than NO3-, and the affinity of roots for NH4+ were stronger than NO3-, and showed significant absorption preferences for ammonium. Loquat likes ammonium nutrition absorption characteristics, which is the preferred form of loquat absorption. So ammonium can obviously promote the growth development of loquat seedlings and strengthen the loquat seedlings for nitrogen uptake, but nitrate can inhibit the growth of loquat seedlings. Under the conditions of mixed supply of ammonium and nitrate, adding ammonium could promote the growth development of loquat seedlings.

Key words: loquat, nitrate, ammonium, growth, absorption kinetics

[1]    劳秀荣. 果树施肥手册. 北京: 中国农业出版社, 2000: 408-413.
Lao X R. The Fruit Trees Fertilization Manual. Beijing: China Agricultural Press, 2000: 408-413. (in Chinese)
[2]    陆欣. 土壤肥料学. 北京: 中国农业大学出版社, 2003: 188-212.
Lu X. Soil Fertilizer Science. Beijing: China Agricultural University Press, 2003: 188-212. (in Chinese)
[3]    Loulakakis K A, Roubelakis-Angelakis K A. Nitrogen Assimilation In Grapevine &Molecular Biology and Biotechnology of the Grapevine. Netherlands: Kluwer Academic Publishers, 2001: 59-85.
[4]    秦嗣军, 吕德国, 李志霞, 马怀宇, 刘灵芝, 刘国成. 不同形态氮素对东北山樱幼苗根系呼吸代谢及生物量的影响. 园艺学报, 2011, 38(6): 1021-1028.
Qin S J, Lv D G, Li Z X, Ma H Y, Liu L Z, Liu G C. Effects of different nitrogen forms on root respiratory metabolism and on biomass in seedlings of Cerasus sachalinensis. Acta Horticulturae Sinica, 2011, 38(6): 1021-1028. (in Chinese)
[5]    王海宁, 葛顺峰, 姜远茂, 魏绍冲, 彭福田, 陈倩. 苹果砧木生长及吸收利用硝态氮和铵态氮特性比较. 园艺学报, 2012, 39(2): 343-348.
Wang H N, Ge S F, Jiang Y M, Wei S C, Peng F T, Chen Q. Growth characteristics and absorption, distribution and utilization of 15NO3--N and 15NH4+-N application for five apple rootstocks. Acta Horticulturae Sinica, 2012, 39(2): 343-348. (in Chinese)
[6]    乌凤章, 王贺新, 陈英敏, 李根柱. 我国蓝莓生理生态研究进展. 北方园艺, 2006(3): 48-49.
Wu F Z, Wang H X, Chen Y M, Li G Z. Blueberry physiological ecology research progress in our country. Northern Horticulture, 2006(3): 48-49. (in Chinese)
[7]    崔晓阳, 宋金凤. 原始森林土壤NH4+和NO3-生境特征与某些针叶树种的适应性. 生态学报, 2005, 25: 11.
Cui X Y, Song J F. Soil NH4+/NO3-nitrogen characteristics in primary forests and the adaptability of some coniferous species. Acta Ecologica Sinica, 2005, 25: 11. (in Chinese)
[8]    樊卫国, 葛会敏. 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响. 中国农业科学, 2015, 48(13): 2666-2675.
Fan W G, Ge H M. Effects of nitrogen fertilizer of different forms and ratios on the growth, nitrogen absorption and utilization of young Navel Orange Trees grafted on Poncirus trifoliata. Scientia Agricultura Sinica, 2015, 48(13): 2666-2675. (in Chinese)
[9]    任军, 徐程扬, 林玉梅, 周睿智, 张爱花. 水曲柳幼苗根系吸收不同形态氮的动力学特征. 植物生理学通讯, 2008, 44(5): 919-922.
Ren J, Xu C Y, Lin Y M, Zhou R Z, Zhang A H. Kinetic characteristics of different forms of absorbing nitrogen in root system of Fraxinus mandshurica Rupr. seedlings. Plant Physiology Communications, 2008, 44(5): 919-922. (in Chinese)
[10]   王岚, 王伟, 黄承和, 常春荣. 不同铵硝配比对香蕉幼苗硝态氮吸收动力学特征影响. 热带作物学报, 2012, 33(6): 988-992.
Wang L, Wang W, Huang C H, Chang C R. Effect of nitrate kinetic with different ratios of ammonium and nitrate in banana seedlings. Chinese Journal of Tropical Crops, 2012, 33(6): 988-992. (in Chinese)
[11]   Youngdahl L J, Pacheco R, Street J J, Vlek P L G. The kinetics of ammonium and nitrate uptake by young rice plants. Plant Soil, 1982, 69(2): 225-232.
[12]   沈根祥, 姚芳, 胡宏, 倪吾钟, 朱荫湄. 浮萍吸收不同形态氮的动力学特性研究. 土壤通报, 2006, 27(3): 505-508.
Shen G X,Yao F, Hu H, Ni W Z, Zhu Y M. The kinetics of ammonium and nitrate uptake by Duckweed (Spirodela oligorrhiza) plant. Chinese Journal of Soil Science, 2006, 7(3): 505-508. (in Chinese)
[13]   Fang Y Y, Babourina O, Rengel Z, Yang X E, Pu P M. Ammonium and nitrate uptake by the floating plant Landoltia punctata. Annals of Botany, 2007, 99(2): 365-370.
[14]   周晓红, 王国祥, 杨飞, 何伟, 杨周. 空心菜对不同形态氮吸收动力学特性研究. 水土保持研究, 2008, 15: 5.
Zhou X H, Wang G X, Yang F, He W, Yang Z. Uptake kinetic characteristics of different ammonium and nitrate by Ipomoea aquatica Forsk. Research of Soil and Water Conservation, 2008, 15: 5. (in Chinese)
[15]   谢丽凤, 陆开宏, 胡智勇, 张克鑫, 刘夏松. 多花黑麦草对不同形态氮的吸收动力学特征研究. 生态科学, 2010, 29(3): 229-233.
Xie L F, Lu K H, Hu Z Y, Zhang K X, Liu X S. Study on the Uptake kinetics of ammonium and nitrate in Lolium multiflorum Lam. Ecological Science, 2010, 29 (3): 229-233. (in Chinese)
[16]   杜旭华, 彭方仁. 无机氮素形态对茶树氮素吸收动力学特性及个体生长的影响. 作物学报, 2010, 36(2): 327-334.
Du X H, Peng F R. Effect of inorganic nitrogen forms on growth and kinetics of ammonium and nitrate uptake in Camellia sinensis L.. Acta Agronomica Sinica, 2010, 36(2): 327-334. (in Chinese)
[17]   毛达如, 申建波. 植物营养研究方法. 北京: 中国农业大学出版社, 2011: 324-335.
Mao D R, Shen J B. Plant Nutrition Research Methods. Beijing: China Agricultural University Press, 2011: 324-335. (in Chinese)
[18]   Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux in to roots of intact plants. Plant Physiology, 1974, 54(4): 564-568.
[19]   吕伟仙, 葛滢, 吴建之, 常杰. 植物中硝态氮、氨态氮、总氮测定方法的比较研究. 光谱学与光谱分析, 2004, 24(2): 204-206.
Lv W X, Ge Y, Wu J Z, Chang J. Study on the method for the determination of nitric nitrogen, ammoniacal nitrogen and total nitrogen in plant. Spectroscopy and Spectral Analysis, 2004, 24(2): 204-206. (in Chinese)  
[20]   鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 49-55.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000: 49-55. (in Chinese)
[21]   杨洪强, 张连忠, 戚金亮, 接玉玲. 苹果砧木根系钙素吸收动力学研究. 园艺学报, 2003, 30(3): 253-257.
Yang H Q, Zhang L Z, Qi J L, Jie Y L. The kinetics of calcium uptake in apple rootstock roots. Acta Horticulturae Sinica, 2003, 30(3): 253-257. (in Chinese)
[22]   华海霞, 梁永超, 娄运生, 张杰. 水稻硅吸收动力学参数固定方法的研究. 植物营养与肥料学报, 2006, 12(3): 358-362.
Hua H X, Liang Y C, Lou Y S, Zhang J R. Comparison of research methods for silicon uptake kinetics of rice. Plant Nutrition and Fertilizer Science, 2006, 12(3): 358-362. (in Chinese)
[23]   张超一, 樊小林. 铵态氮及硝态氮配比对香蕉幼苗氮素吸收动力学特征的影响. 中国农业科学, 2015, 48(14): 2777-2784.
Zhang C Y, Fan X L. Dynamic kinetic characteristics of different ratios of ammonium and nitrate absorbed by banana seedlings. Scientia Agricultura Sinica, 2015, 48(14): 2777-2784. (in Chinese)
[24]   梁立峰. 果树栽培学实验实习指导. 北京: 中国农业出版社, 1997: 25.
Liang L F. Fruit Cultivation Experiment Practice Guidance. Beijing: China agriculture press, 1997: 25. (in Chinese)
[25]   汪晓丽, 封克, 盛海君, 陈平. 不同水稻基因型苗期NO3-吸收动力学特征及其受吸收液中NH4+的影响. 中国农业科学, 2003, 36(11): 1306-1311.
Wang X L, Feng K, Sheng H J, Chen P. Kinetics of nitrate uptake by different rice genotypes and the effects of ammonium on nitrate uptake at the seedlings stage. Scientia Agricultura Sinica, 2003, 36(11): 1306-1311. (in Chinese)
[26]   Kosmidis K, Karalis V, Argyrakis P, Macheras P. Michaelis-Menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics. Biophysical Society, 2004, 87(3): 1498-1506.
[27]   蒋廷惠, 郑绍建, 石锦芹, 胡霭堂, 史瑞和, 徐茂. 植物吸收养分动力学研究中的几个问题. 植物营养与肥料学报, 1995, 1(2): 11-17.
Jiang T H, Zheng S J, Shi J Q, Hu A T, Shi R H, Xu M. Several considerations in kinetics research on nutrients uptake by plants. Plant Nutrition and Fertilizer Science, 1995, 1(2): 11-17. (in Chinese)
[28]   吕德国, 王英, 秦嗣军, 马怀宇, 刘国成, 杜国栋, 孟倩. 冷凉条件对山荆子幼苗根系氮素吸收动力学参数的影响. 园艺学报, 2010, 21(9): 2335-2341.
Lü D G,Wang Y, Qin S J, Ma H Y, Liu G C, Du G D, Meng Q. Effects of cool and cold conditions on nitrogen uptake kinetics in Malus baccata Borkh. seedlings. Acta Horticulturae Sinica, 2010, 21(9): 2335-2341. (in Chinese)
[29]   翟明普, 蒋三乃. 小钻杨和刺槐根系养分吸收的动力学研究. 北京林业大学学报, 2006, 28(2): 30-35.
Zhai M P, Jiang S N. Dynamics of nutrient absorption in root systems of Populuxiaozhuanica and Robinia×pseudoacacia. Journal of Forestry University, 2006, 28(2): 30-35. (in Chinese)
[30]   王义琴, 张慧娟, 白克智, 孙勇如. 分形几何在植物根系研究中的应用. 自然杂志, 1999, 21(3): 143-146.
Wang Y Q, Zhang H J, Bai K Z, Sun Y R. Application of fractal geometry in the studies of plant root systems. Chinese Journalof Nature, 1999, 21(3): 143-146. (in Chinese)
[31]   陈吉虎, 余新晓, 有祥亮, 刘苹, 张长达, 谢港. 不同水分条件下银叶椴根系的分形特征.中国水土保持科学, 2006, 4(2): 71-74.
Chen J H, Yu X X, You X L, Liu P, Zhang C D, Xie G. Fractal characteristics of Tilia tomentosas root system under different water conditions. Science of Soil and Water Conservation, 2006, 4(2): 71-74. (in Chinese)
[32]   魏红旭, 徐程扬, 马履一, 江俐妮, 李雪莲, 杨卓. 长白落叶松幼苗对铵态氮和硝态氮吸收的动力学特征. 植物营养与肥料学报, 2010(2): 407-412.
Wei H X, Xu C Y, Ma L Y, Jiang L N, Li X L, Yang Z. Dynamic kinetic characteristics of different forms of nitrogen absorbed by Larix olgensis seedlings. Plant Nutrition and Fertilizer Science, 2010(2): 407-412. (in Chinese)
[33]   Cacco G., Ferrari G., Saccomani M.. Variability and inheritance of sulfate uptake efficiency and ATP-sulfurylase in maize. Crop Science, 1978, 18(3): 503-505.
[34]   Kronzucher H J, Sididqi M Y, Glass A D M. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature, 1997, 385: 59-61.
[35]   张亚丽, 董园园, 沈其荣. 不同水稻品种对铵态氮和硝态氮吸收特性的研究. 土壤学报, 2004, 41(6): 918-924.
Zhang Y L, Dong Y Y, Shen Q R. Characteristics of NH4+and NO3-uptake by rices of different genotypes. ActaPedologica Sinica , 2004, 41(6): 918-924. (in Chinese)
[36]   Kronzucker H J, Siddiqi M Y. Inhibition of nitrate uptake by ammonium in barley. analysis of component fluxes. Plant Physiology, 1999, 120(1): 283-292.
[37]   Sven S, Feng Y. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+- ATPase. Zeitschrift für Pflanzenernährung und Bodenkunde, 1997, 160(2): 275-281.
[38]   Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants (Reviews). Plant Science, 1998, 3(10): 389-395.
[39]   Colmer T D, Bloom A J. A comparision of NH4+and NO3- net fluxes along roots of rice and maize. Plant Cell and Environment, 1998, 21(2): 240-246.
[40]   Knoepp J D, Turner D P, Tingey D T. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock. Forest Ecology and Management, 1993, 59: 179-191.
[41]   Bedell J P, Chalot M, Garnier A. Effects of nitrogen source on growth and activity of nitrogen-assimilating enzymes in Douglas-fir seedlings. Tree Physiology, 1999, 19: 205-210.
[42]   张彦东, 白尚斌. 氮素形态对树木养分吸收和生长的影响. 应用生态学报, 2003, 14: 2044-2048.
Zhang Y D, Du S B. Effects of nitrogen forms on nutrient uptake and growth of trees. Chinese Journal of Applied Ecology, 2003, 14: 2044-2048. (in Chinese)
[43]   郭亚芬, 孔凡婧, 付连云, 崔晓阳. 不同NH4+/NO3-配比对红松幼苗生长的影响. 土壤通报, 2010, 41(4): 923-926.
Guo Y F, Kong F J, Fu L Y, Cui X Y. Effects of different ratios of NH4+/NO3- on growth of Pinus koraiensis seedings. Chinese Journal of Soil Science, 2010, 41(4): 923-926. (in Chinese)
[44]   Kronzucker H J, Glass A D M, Siddiqi M Y, Kirk G J D. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytologist, 2000, 145: 471-476.
[45]   Ruan J Y, Zhang F S, Ming H W. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L.. Plant and Soil, 2000, 223(1): 65-73.
[46]   Lavoie N, Vézina L P, Margolis H A. Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings. Tree Physiology, 1992, 11: 171-183.
[47]   Merhaut D J, Darnell R L. Effects of nitrogen form on vegetative growth, photosynthesis, and effluent pH in ‘Climax’ and ‘Sharpblue’ blueberries. HortScience, 1993, 28: 572-576.
[48]   Rosen C J, Allan D L, Luby J J. Nitrogen form and solution pH influence growth and nutrition of two vaccinium clones. Journal of the American Society for Horticultural Science, 1990, 115: 83-89.
[49]   刘春娜, 崔晓阳, 郭亚芬, 郑红. 铵态氮与硝态氮配比对落叶松幼苗生长的影响. 东北林业大学学报, 2011, 39(1): 28-30.
Liu C N, Cui X Y, Guo Y F, Zheng H. Effects of different ratios of NH4+/NO3- on growth of Larix gmelinii seedlings. Journal of Northeast Forestry University, 2011, 39(1): 28-30. (in Chinese)
[50]   Gutschick V P, Alamos L, Mexico N. Evolved strategies in nitrogen acquisition by plants. The American Naturalist, 1981, 118(5): 607-637.
[51]   Mill A J, Cramer M D. Root nitrogen acquisition and assimilation. Plant and Soil, 2005, 274: 1-36.
[52]   陈杰忠. 果树栽培学各论. 北京: 中国农业出版社, 2011: 111-115.
Chen J Z. The Academic Fruit Cultivation Theory. Beijing: China Agriculture Press, 2011: 111-115. (in Chinese)
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[5] DONG ZeKuan,ZHANG ShuiQin,LI YanTing,GAO Qiang,ZHAO BingQiang,YUAN Liang. Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate [J]. Scientia Agricultura Sinica, 2022, 55(21): 4225-4236.
[6] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[9] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[10] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[11] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[12] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[13] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[14] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[15] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!