Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (3): 593-608.doi: 10.3864/j.issn.0578-1752.2016.03.017

• RESEARCH NOTES • Previous Articles    

Genetic Diversity and Population Structure Analysis of Main Sweet Potato Breeding Parents in Southwest China

LUO Kai1, LU Hui-xiang1, WU Zheng-dan1, WU Xue-li1, YIN Wang1, TANG Dao-bin1,2WANG Ji-chun1,2, ZHANG Kai1,2   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
    2Chongqing Sweet Potato Engineering Technological Research Center, Chongqing 400716
  • Received:2015-08-13 Online:2016-02-01 Published:2016-02-01

Abstract: 【Objective】 To provide a reference for the conservation and application of breeding parentallines resource, as well as molecular assistant selection (MAS) in sweet potato (Ipomoea batatas), a comprehensive analysis of genetic diversity and population structure analysis of the main sweetpotato breeding parentallines in southwest China was performed. 【Method】 Genetic diversity of 82 main sweet potato breeding parents in southwest China was evaluated by using 61 sample sequence repeats (SSR) markers, 13 agronomic traits and 6 quality traits. The Nei72 genetic distance matrices of 82 tested sweet potato breeding parents were generated based on SSR markers while quality trait and agronomy trait were assessed using NTSYS-pc version 2.10. The mean genetic distance of the tested sweet potato breeding parents based on SSR marker, quality trait and agronomy trait were generated by using Mega version 6.06. Mantel test among genetic distance matrices generated based on SSR marker, quality trait and agronomic trait were conducted by using NTSYS-pc version 2.10. The unweighted pair group method with arithmetic mean (UPGMA) cluster analysis of 82 sweetpotato breeding parents based on quality trait, Neighbor-Joining (NJ) cluster analysis based on SSR marker and UPGMA cluster analysis based on agronomy trait were performed by using Mega version 6.06. Meanwhile, the population structure of 82 sweet potato genotypes was determined based on polymeric data generated by SSR markers using STRUCTURE version 2.4.【Result】 405 polymorphic loci were detected using 61 SSR markers with a mean of 6.64 alleles per primer pair. The number of polymorphic loci obtained from each primer pair ranged from 1 to 17. The SSR marker, quality trait and agronomic trait-based mean Nei’s genetic diversity of tested sweet potato breeding parents was 0.35, 0.22 and 0.03, respectively The tested 82 sweet potato genotypes could be divided into 7 subgroups based on NJ clustering using SSR markers. This same sweet potato collection could be divided into 1 major subgroup and 3 minor subgroups based on UPGMA method using either agronomic or quality traits, but the results showed differentiation. Among the tested sweet potato breeding parents, the genotypes with different original resources could be clustered into the same subgroups in the cluster analysis based on SSR marker, quality trait and agronomic trait, indicating there was no significant genetic differentiation among the tested sweet potato genotypes from different original resources. Mantel test detected little correlation among genetic distance matrices generated by using SSR marker, quality trait and agronomic trait (r=0.016), and a negative correlation (r=-0.041) was detected between genetic distance matrices generated by using quality and agronomic trait. The maximum ad hoc quantity ΔK was observed for K=3 in population structure analysis, indicating that the entire collection could be divided into three subpopulations. Using a membership probability threshold of ≥0.60, 53 genotypes (accounting for 64.6% of the tested genotypes) were assigned to the three subpopulations, and 29 (account for 35.4% of tested breeding parents) were retained in the admixed group (AD). The assignment of 82 sweetpotato genotypes determined by structure analysis was similar but not fully consistent with the assignment pattern of NJ clustering based on SSR marker. 【Conclusion】 Our results demonstrated that a wide genetic diversity at the genomic level was found among the tested main sweet potato breeding parental lines in southwest China. Genetic differentiation could be found in their quality traits, but little differentiation could be found in their agronomic traits. Furthermore, there exists a strong limitation in studying genetic diversity by using a single marker system or trait, and comprehensive analysis systems, combining molecular markers and various phenotypic traits should be given priority in further studies of genetic relationships and population structure of sweet potato breeding parental lines.

Key words: sweetpotato, genetic diversity, population structure, agronomic trait, SSR, quality trait

[1]    刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004, 9: 3.
Liu Q C. Importance of sweet potato in the security of food and energy in China. Science and Technology Review, 2004, 9: 3. (in Chinese)
[2]    贺学勤, 刘庆昌, 翟红, 王玉萍. RAPDISSRAFLP标记分析系谱关系明确的甘薯品种的亲缘关系. 作物学报, 2005(10): 1300-1304.
He X Q, Liu Q C, Zhai H, Wang Y P. The use of RAPD, ISSR and AFLP marker for analysis relationships and among sweet potato cultivars with known origins. Acta Agronmica Sinica, 2005(10): 1300-1304. (in Chinese)
[3]    Zhang D P, Cervantes J, Huamán Z, Carey E, Ghislain M. Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution, 2000, 47(6): 659-665.
[4]    Austin D F. The taxonomy evolution and genetic diversity of sweet potatoes and related wild species//Proceedings of the First Planning Conference. Lima, Peru, International Potato Center (CIP), 1988: 27-59.
[5]   Sagredo B, Hinrichsen P, López H, Cubillos A, Muñoz C. Genetic variation of sweet potatoes (Ipomoea batatas L.) cultivated in Chile determined by RAPDs. Euphytica, 1998, 101(2): 193-198.
[6]    Zhang K, Wu Z D, Li Y H, Zhang H, Wang L P, Zhou Q L, Tang D B, Fu Y F, He F F, Jiang Y C, Yang H, Wang J C. ISSR-based molecular characterization of an elite germplasm collection of sweet potato (Ipomoea batatas L.) in China. Journal of Integrative Agriculture, 2014, 13(14): 2346-2361.
[7]    贺学勤, 刘庆昌, 王玉萍, 翟红. 中国甘薯地方品种的遗传多样性分析. 中国农业科学, 2005, 2(38): 250-257.
He X Q, Liu Q C, Wang Y P, Zhai H. Analysis of genetic of sweet potato landraces in China. Scientia Agricultura Sinica, 2005, 2(38): 250-257. (in Chinese)
[8]    Karuri H W, Ateka E M, Amata R, Nyende A B, Muigai A W T, Mwasame E, Gichuki S T. Evaluating diversity among kenyan sweet potato genotypes using morphological and SSR markers. International Journal of Agriculture & Biology, 2010, 12(1): 33-38.
[9]    Filippi C V, Aguirre N, Rivas J G, Zubrzycki J, Puebla A, Cordes D, Moreno M V, Fusari C M, Alvarez D, Heinz R A, Hopp H E, Paniego N B, Lia V V. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biology, 2015, 15(1): 52.
[10]   Garris A J, Tai T H, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L.. Genetics, 2005, 169: 1631-1638.
[11]   Würschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126(6): 1477-1486.
[12]   Inghelandt D V, Melchinger A E, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 2010, 120(7): 1289-1299.
[13]   Adugna A. Analysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers. Springerplus, 2014, 3: 212.
[14]   Schlötterer C. Opinion: The evolution of molecular markers-just a matter of fashion? Nature Reviews Genetics, 2004, 5(1): 63-69.
[15]   Ferrão L F V, Caixeta E T, Pena G, Zambolim E M, Cruz C D, Zambolim L, Ferrão M A G, Sakiyama N S. New EST-SSR markers of Coffea arabica: Transferability and application to studies of molecular characterization and genetic mapping. Molecular Breeding, 2015, 1(35): 1-5.
[16]   Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 2005, 23(1): 48-55.
[17]   张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Zhang Y G, Fang B P. Descriptors and Data Standard for Sweet Potato [Ipmooea batatas (L.) Lam.]. Beijing: China Agriculture Press, 2006. (in Chinese)
[18]   吕长文, 唐道彬, 罗小敏, 王季春. 甘薯干物质测定方法研究. 江苏农业科学, 2009(3): 307-308.
Lü C W, Tang D B, Luo X M, Wang J C. A study of method for dry matter test on sweet potato. Jiangsu Journal of Agricultural Science, 2009(3): 307-308. (in Chinese)
[19]   陆国权, 施志仁. 甘薯淀粉的测定方法及其标准化探讨. 国外农学-杂粮作物, 1997(6): 39-44.
Lu G Q, Shi Z R. Starch test and standard for sweet potato. Rain Fed Crops, 1997(6): 39-44. (in Chinese)
[20]   王文质, 以凡, 杜述蓉, 魏秀玲, 许莉萍, 曹化林. 甘薯淀粉含量换算公式及换算表. 作物学报, 1989, 15(1): 94-96.
Wang W Z, Yi F, Du S R, Wei X L, Xu L P, Cao H L. Conversion table of the starch content in sweet potato. Acta Agromica Sinica, 1989, 15(1): 94-96. (in Chines)
[21]   黄立飞, 房伯平, 陈景益, 何秀英, 张雄坚, 王章英, 罗忠霞. 单波长比色法测定甘薯直链淀粉含量. 中国粮油学报, 2010(5): 100-104.
Huang L F, Fang B P, Chen J Y, He X Y, Zhang X J, Wang Z Y, Luo Z X. Determination of amylose content in sweet potato by single wave length colorimetry. Journal of the Chinese Cereals and Oils Association, 2010(5): 100-104. (in Chinese)
[22]   马代夫, 李强, 李秀英, 李洪民, 唐忠厚, 胡玲, 曹清河, 谢逸萍, 王欣. 甘薯高胡萝卜素食用品种的亲本筛选. 中国农业科学, 2009. 42(3): 798-808.
Ma D F, Li Q, Li X Y, Li H M, Tang Z H, Hu L, Cao Q H, Xie Y P, Wang X. Selection of parents for breeding of sweet potato varieties of high carotene content. Scientia Agrocultura Sinica, 2009, 42(3): 798-808. (in Chinese)
[23]   Kim S H, Hamada T. Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnology Letters, 2005, 27(23/24): 1841-1845.
[24]   Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis system, Version 2.1. Setauket, New York, USA: Exeter Press, 2002.
[25]   Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis Version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[26]   Hubize M J, Falush D, Stephen M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources,2009, 9(5): 1322-1332.
[27]   Earl D A, von Holdt B M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359-361.
[28]   Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[29]   李强, 陆国权, 翟红, 马代夫, 王欣, 李雪琴, 王玉萍. 中国甘薯主要亲本遗传多样性的ISSR分析. 作物学报, 2008(6): 972-977.
Li Q, Lu G Q, Zhai H, Ma D F, Wang X, Li X Q, Wang Y P. Genetic diversity in main parents of sweet potato in China as revealed by ISSR marker. Acta Agronomica Sinica,2008(6): 972-977. (in Chinese)
[30]   Jarret R L, Austin D F. Genetic diversity and systematic relationships in sweet potato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genetic Resources & Crop Evolution, 1994, 41(3): 165-173.
[31]   后猛, 李强, 唐忠厚, 王欣, 辛国胜, 吴问胜, 王良平, 张允刚, 唐维, 李秀英, 马代夫. 不同生态环境对甘薯主要品质性状的影响. 中国生态农业农业学报, 2012, 20(9): 1180-1184.
Hou M, Li Q, Tang Z H, Wang X, Xin G S, Wu W S, Wang L P, Zhang Y G, Tang W, Li X Y, Ma D F. Effects of ecological conditions on main quality traits of sweet potato. Chinese Journal of Eco- Agriculture, 2012, 20(9): 1180-1184. (in Chinese)
[32]   唐忠厚, 李强, 李洪民, 马代夫. 紫甘薯主要品质性状基因型与环境效应研究. 中国粮油学报, 2010, 25(9): 32-35.
Tang Z H, Li Q, Li H M, Ma D F. Genetic typical variation and environmental effects on quality traits of purple sweet potato. Journal of the Chinese Cereals and Oils Association, 2010, 25(9): 32-35. (in Chinese)
[33]   Elameen A, Larsen A, Klemsdal S S, Fjellheim S, Sundheim L, Msolla S, Masumba E, Rognli O A. Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato, Ipomoea batatas (L.) Lam., germplasm collection from Tanzania. Genetic Resources and Crop Evolution, 2011, 58(3): 397-407.
[34]   Yada B, Tukamuhabwa P, Alajo A, Mwanga R O M. Morphological characterization of ugandan sweet potato germplasm. Crop Science, 2010, 50(6): 2364-2371.
[35]   Veasey E A, Silva J R Q, Rosa M S, Borges A, Bressan E A, Peroni N. Phenology and morphological diversity of sweet potato (Ipomoea batatas) landraces of the Vale do Ribeira. Scientia Agricola, 2007, 64(4): 416-427.
[36]   Hartings H, Berardo N, Mazzinelli G F, Valoti P, Verderio A, Motto M. Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theoretical and Applied Genetics, 2008, 117(6): 831-842.
[37]   张凯, 罗小敏, 王季春, 唐道彬, 吴正丹, 叶爽, 王莉. 甘薯淀粉产量及相关性状的遗传多样性及关联度分析. 中国生态农业学报, 2013, 21(3): 365-374.
Zhang K, Luo X M, Wang J C, Tang D B, Wu Z D, Ye S, Wang L. Genetic diversity and correlation analysis of starch yield-related traits in sweet potato. Chinese Journal of Eco-Agriculture, 2013, 21(3): 365-374. (in Chinese)
[38]   崔翠, 周清元, 蒲海斌, 张建奎, 何凤发. 甘薯部分数量性状的遗传力及其相关分析. 西南农业大学学报: 自然科学版, 2004, 26(5): 560-562.
Cui C, Zhou Q Y, Pu H B, Zhang J K, He F F. Study on heritability and coorelation of some quantitative characters in sweet potato. Journal of Southwest Agricultural University: Natural Science, 2004, 26(5): 560-562. (in Chinese)
[39]   Ren X P, Jiang H F, Yan Z Y, Chen Y N, Zhou X J, Huang L, Lei Y, Huang J Q, Yan L Y, Qi Y, Wei W H, Liao B S. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS ONE, 2014, 9(2): e88091.
[40]   Roullier C, Rossel G, Tay D, McKey D, Mckey D, Lebot V. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Molecular Ecology, 2011, 20(19): 3963-3977.
[41] Du Q Z, Wang B W, Wei Z Z, Zhang D Q, Li B L. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. Journal of Heredity, 2012, 103(6): 853-862.
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[10] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[11] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[12] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[13] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[14] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[15] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!