Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3388-3393.doi: 10.3864/j.issn.0578-1752.2015.17.006

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

High-Yield Potential and Effective Ways of Wheat in Yellow & Huai River Valley Facultative Winter Wheat Region

RU Zhen-gang, FENG Su-wei, LI Gan   

  1. Center of Wheat Research of Henan Institute of Science and Technology/Henan Province Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan
  • Received:2015-01-20 Online:2015-09-01 Published:2015-09-01

Abstract: Yellow & Huai River Valley Facultative Wheat Region is a major area of wheat production in China. In the present production condition, improvement of the total production of wheat depends on the increase of yield per unit area. Therefore, the cultivation of high yield varieties is very important for wheat production. In this study, according to the production conditions and ecological characteristics of Yellow & Huai River Valley Facultative Winter Wheat Region, the yield potential under field conditions were analyzed, and pointed out that the two traits, i.e. 1000-grain weight and spike number, will make a greater contribution to wheat production. Furthermore, according to fitting in with the needs of mechanized production in this region, breeding strategies and yield potential of high yield varieties were discussed and pointed out three effective ways to achieve high-yield potential of wheat in future: (1) Making effective utilization of photosynthetic efficiency of spike and cultivating high efficiency varieties. Besides the space superiority, the photosynthetic pathway of spike is C4 or C3 to C4, which can fix CO2 from seed respiration again. So the photosynthetic efficiency of spike plays important roles in grain filing of wheat. Enhancing the photosynthetic efficiency of spike to breed high efficiency varieties is one of the important ways to achieve high-yield potential of wheat. (2) Improving yields of wheat must focus on increasing population biomass. Maintaining the existing harvest index unchanged, improving the spatial structure of populations and breeding new varieties with lobules, strong stalk and large spike can achieve high biomass and improve yields. In addition, high biomass varieties should present different spike layers, which can effectively increase the spike number per unit area. (3) Heterosis is another effective way to realize yield-potential of wheat. However, in the process of utilization of heterosis, both of yield and quality should be considered simultaneously, especially the coordination of different quality traits. Increasing the spike number and improving the proportion of superior florets can realize the coordination of high yield and superior quality. Achieving the yield-potential of wheat is a long-term process and this paper aims to provide ideas and methods for achieving the yield-potential and realizing maximum output in Yellow & Huai River Valley Facultative Wheat Region.

Key words: wheat, yellow &, huai river valley facultative wheat region, high-yield potential, high biological yield, high photosynthetic efficiency

[1]    张晶. 2035年中国人粮关系情景分析. 中国农业资源与区划, 2011, 32(3): 26-31.
Zhang J. Scenario analysis of Relationship between population and grain in China in 2035. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(3): 26-31. (in Chinese)
[2]    李振声. 我国小麦育种的回顾与展望. 中国农业科技导报, 2010, 12(2): 1-4.
Li Z S. Retrospect and prospect of wheat breeding in China. Journal of Agricultural Science and Technology, 2010, 12(2): 1-4. (in Chinese)
[3]    Niu L Y, Feng S W, Ru Z G, Li G, Zhang Z P, Wang Z W. Rapid determination of single-stalk and population lodging resistance strengths and an assessment of the stem lodging wind speeds for winter wheat. Field Crops Research, 2012, 139: 1-8.
[4]    http://newpaper.dahe.cn/hnrb/html/2012-09/11/content_780327.htm? div =-1.
[5]    http://www.saas.ac.cn/news/shownews.asp?id=6605.
[6]    郭天财, 沈天民, 王西成, 茹振钢. 智利的小麦科研与生产. 麦类作物学报, 2005, 25(2): 132-134.
Guo T C, Shen T M, Wang X C, Ru Z G. Research and production of wheat in Chile. Journal of Triticeae Crops, 2005, 25(2): 132-134. (in Chinese)
[7]    刘万代, 尹钧, 朱高纪. 剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响. 中国农业科学, 2007, 40(7): 1353-1360.
Liu W D, Yin J, Zhu G J. Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Scientia Agricultura Sinica, 2007, 40(7): 1353-1360. (in Chinese)
[8]    冯素伟, 董娜, 姜小苓, 茹振钢, 李笑慧, 程振普. 小麦不同光合器官对千粒重贡献的研究. 河南科技学院学报: 自然科学版, 2011, 39(4): 1-4.
Feng S W, Dong N, Jiang X L, Ru Z G, Li X H, Cheng Z P. Study on the contribution of different photosynthesis-organs of wheat to 1000-grain weight. Journal of Henan Institute of Science and Technology, 2011, 39(4): 1-4. (in Chinese)
[9]    鲁清林, 柴守玺, 张礼军, 周刚. 冬小麦叶片和非叶器官对粒重的贡献. 草业科学, 2013, 22(5): 165-174.
Lu Q L, Chai S X, Zhang L J, Zhou G. Contribution of winter wheat leaf and non-leaf organs to grain weight. Acta Prataculturae Sinica, 2013, 22(5): 165-174. (in Chinese)
[10]   Gebbing T, Schnyder H. 13C Labeling kinetics of sucrose in glumes indicates significant refixation of respiration CO2 in the wheat ear. Australian Journal of Plant Physiology, 2001, 28: 1047-1053.
[11]   Morgan J M. Osmotic adjustment in the spikelets and leaves of wheat. Journal of Experimental Botany, 1980, 31: 655-665.
[12]   Ziegler-Jons A. Gas exchange of ears of cereals in response to carbon dioxide and light: II. Occurrence of a C3~C4 intermediate type of photosynthesis. Planta, 1989, 178: 164-175.
[13]   Johnson R, Moss D N. Effect of water stress on 14CO2 fixation and translocation in wheat during grain filling. Crop Science, 1976, 16: 697-701.
[14]   魏爱丽, 王志敏. 小麦不同光合器官对穗粒重的作用及基因型差异研究. 麦类作物学报, 2001, 21(2): 57-61.
Wei A L, Wang Z M. A study on the contribution of different organs to grain weight in different genotype wheat. Journal of Triticeae Crops, 2001, 21(2): 57-61. (in Chinese)
[15]   张英华, 杨佑明, 曹莲, 郝杨凡, 黄菁, 李金鹏, 姚得秀, 王志敏. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响. 作物学报, 2015, 41(1): 136-144.
Zhang Y H, Yang Y M, Cao L, Hao Y F, Huang J, Li J P, Yao D X, Wang Z M. Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat. Acta Agronomic Sinica, 2015, 41(1): 136-144. (in Chinese)
[16]   Blum A. Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. Journal of Experimental Botany, 1985, 36(3): 432-440.
[17]   Araus J L, Brown H R, Febrero A, Bort J, Serret M D. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to different in grain mass in durum wheat. Plant Cell and Environment, 1993, 1(6): 383-392.
[18]   张永平, 王志敏, 黄琴, 谢岷. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008, 34(7): 1213-1219. 
Zhang Y P, Wang Z M, Huang Q, Xie M. Changes of chloroplast ultra microstructure and function of different green organs in wheat under limited irrigation. Acta Agronomic Sinica, 2008, 34(7): 1213-1219. (in Chinese)
[19]   Martinez D E, Luquez V M, Bartoli C G. Persistence of photo- synthetic components and photochemical efficiency in ears of water- stressed wheat (Triticum aestivum). Physiology Plant, 2003, 119: 519-525.
[20]   王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136-139.
Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. Journal of Triticeae Crops, 2004, 24(4): 136-139. (in Chinese)
[21]   冯素伟, 胡铁柱, 姜小苓, 张自阳, 李小军, 茹振钢. 小麦高产品种的主要性状比较与相关性分析. 河南科技学院学报, 2012, 40(6): 1-6.
Feng S W, Hu T Z, Jiang X L, Zhang Z Y, Li X J, Ru Z G. Comparison of main characters and correlation analysis between different high-yield wheat varieties. Journal of Henan Institute of Science and Technology, 2012, 40(6): 1-6. (in Chinese)
[22]   李罗江, 茹振刚, 高庆荣, 姜辉, 郭凤芝, 吴世文, 孙哲. BNS小麦的雄性不育性及其温光特性. 中国农业科学, 2009, 42(9): 3019-3027.
Li L J, Ru Z G, Gao Q R, Jiang H, Guo F Z, Wu S W, Sun Z. Male sterility and thermo-photosensitivity characteristics of BNS in wheat. Scientia Agricultura Sinica, 2009, 42(9): 3019-3027. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!