Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (11): 2108-2117.doi: 10.3864/j.issn.0578-1752.2015.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of SSR Loci in Nicotina tabacum Genome and Its Two Ancestral Species Genome

TONG Zhi-jun, JIAO Fang-chan, XIAO Bing-guang   

  1. Yunnan Academy of Tobacco Agricultural Sciences/Key Laboratory of Tobacco Biotechnological Breeding/National Tobacco Genetic Engineering Research Center, Kunming 650021
  • Received:2014-10-13 Online:2015-06-01 Published:2015-06-01

Abstract: 【Objective】 The statistical analysis of SSR loci genomic information in Nicotina tabacum (2n = 24Ⅱ= 48 TTSS) and its two ancestral species (N. tomentosiformis 2n = 12Ⅱ= 24 TT and N. sylvestris 2n = 12Ⅱ= 24 SS) are carried out for the genetic analysis of plants of the Nicotiana genus. 【Method】 The data in the above-mentioned three tobacco genomes were downloaded from a public database NCBI (National Center for Biotechnology Information), 50 pairs of random amplified polymorphic SSR were synthesized for each genome, and analyzed by the SSRIT and TRF soft-wares for their SSR-loci distribution. 【Result】 A total of 218 081, 263 478 and 397 432 SSR loci, with their average distance 7.52, 7.78 and 9.06 kb were found in the genomes of N. tomentosiformis, N. sylvestris and N. tabacum, respectively. Almost all the SSR loci are distributed in the intron domains and especially the 5′-UTR domains. The SSR motifs within the genome are dominated by the types of Di-nucleotide and Tri-nucleotide, with more than 2/3 in the total number of SSR motifs, and the type of Di-nucleotide motifs has a most abundant peak, and contains the highest frequency and quantity of A (T)n motif structure. The most of SSR motifs types have 3-10 repetitions, except mono-nucleotide type. There are 150 pairs of primers synthesized are subjected to PCR for the DNAs from eight tobacco species, all of which can amplify the clearly stable target fragments, with 36 pairs of primers shows polymorphisms. 【Conclusion】 Some distribution characteristcs of SSRs in the genomes of N. tomentosiformis, N. sylvestris and N. tabacum were observed, which indicated a high conservation for the SSR loci among the relatively closed tobacco species.

Key words: N. tomentosiformis, N. sylvestris, N. tabacum, genome, SSR loci

[1]    Goodspeed T H. Nicotiana arentisii a new, naturally occurring amphidiploid species. Proceedings of the California Academy of Sciences, 1944, 25(4): 291-306.
[2]    Gerstel D U. Segregation in new allopolyploids of Nicotiana: I. Comparison of 6× (N. tabacum × tomentosiformis) and 6 × (N. tabacum × otophora). Genetics, 1960, 45: 1723-1734.
[3]    Gerstel D U. Segregation in new allopolyploids of Nicotiana: II. Discordant ratios from individual loci in 6 × (N. tabacum ×N. sylvestris). Genetics, 1963, 48: 677-689.
[4]    Sierro N, Battey J N, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch M C, Ivanov N V. The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications,2014, 5: 3833.
[5]    Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 1994, 88: 1-6.
[6]    Richards R I, Sutherland G R. Dynamic mutations: A new class of mutation causing human disease. Cell, 1992, 70(5): 709-712.
[7]    Levinson G, Gutman G A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 1987, 4(3): 203-221.
[8]    Yu J K, La Rota M, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, 2004, 271:742-751.
[9]    Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST-derived micro satellite markers for genotyping the A and B genomes of wheat. Theoretical and Applied Genetics, 2002, 104: 399-407.
[10]   Kantety R V, Rota M L, Matthews D E,Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 2002, 48: 501-510.
[11]   Chen H M, Li L Z, Wei X Y,Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Science Bulletin, 2005, 50(20): 2328-2336.
[12]   Li B, Xia Q, Lu C, Zhou Z. Analysis on frequency and density of microsatellites in coding sequences of eudaryotic genomes. Genomics Proteomics, 2004, 2(1): 24-31.
[13]   Chen C, Zhou P, Choi Y A, Choi Y A. Mining and characterizing microsatellites from citrus EST. Theoretical and Applied Genetics, 2006, 112(7): 1248-1257.
[14]   Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Research, 2007, 14(1): 37-45.
[15]   Bindler G, der Hoeven V R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 2007, 114: 341-349.
[16]   Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, der Hoeven V  R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 2011, 123: 219-230.
[17]   Tong Z J, Yang Z M, Chen X J, Jiao F C, Li X Y, Wu X F, Gao Y L, Xiao B G, Wu W R. Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding, 2012, 131(5): 674-680.
[18]   Tong Z J, Jiao T L, Wang F Q, Li M Y, Len X D, Gao Y L, Li Y P, Xiao B G, Wu W R. Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco (Nicotiana tabacum L.). Plant Breeding, 2012, 131(2): 335-339.
[19]   Vontimitta V, Lewis R S. Mapping of quantitative trait loci affecting resistance to Phytophtora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-100. Molecular Breeding, 2012, 29: 89-98.
[20]   Johnson E S, Wolff M F, Wernsman E A, Rufty R C. Marker-assisted selection for resistance to black shank disease in tobacco. Plant Disease, 2002, 86: 1303-1309.
[21]   Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547-559.
[22]   Fricano A, Bakaher N, Del Corvo M, Piffanelli P, Donini P, Stella A, Ivanov N V, Pozzi C. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L. ) germplasm. BMC Genetics, 2012, 13: 18.
[23]   Smith J S C, Simth O S. An evaluation of the utility of SSR loci a molecular marker in maize (Zea mays L.): Comparison with data from RFLPs and pedigree. Theoretical and Applied Genetics, 1997, 95: 163-173.
[24]   Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henri I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001, 14: 89-101.
[25]   Sarala K, Rao R V S. Genetic diversity in Indian FCV and burley tobacco cultivars. Journal of Genetics, 2008, 87(2): 159-163.
[26]   Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco. Theoretical and Applied Genetics, 1995, 91: 1184-1189.
[27]   Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559-571.
[28]   Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henri I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001, 14: 89-101.
[29]   Moon H S, Nicholson J S, Heineman A, Lion K, van der Hoeven R, Hayes A J, Lewis R S. Changes in genetic diversity of U.S. Flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science, 2009, 49: 498-508.
[30]   Moon H S, Nifong J M, Nicholson J S, Heinemann A, Lion K, van der Hoeven R, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Science, 2009, 49: 2149-2159.
[31]   Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915-919.
[32]   Lawson M J, Zhang L Q. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 2006, 7(2): R14.1-R14.11.
[33]   Yi G, Lee J M, Lee S, Choi D, Kim B D. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theoretical and Applied Genetics, 2006, 114: 113-130.
[34]   Morgante M, Oliveri A M. PCR-amplified micro satellites as markers in plant genetics. The Plant Journal, 1993, 3: 175-182.
[35]   Tang J F, Baldwin S J, Jacobs J M, van der Linden C G, Voorrips R E, Leunissen J A, van Eck H, Vosman B. Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics, 2008, 9: 374-386.
[36]   蔡斌, 李成慧, 姚泉洪, 周军, 陶建敏, 章镇. 葡萄全基因组SSR分析和数据库构建. 南京农业大学学报, 2009, 32(4): 28-32.
Cai B, Li C H, Yao Q H, Zhou J, Tao J M, Zhang Z. Analysis of SSRs in grape genome and development of SSR database. Journal of Nanjing Agricultural University, 2009, 32(4): 28-32. (in Chinese)
[37]   陆景标, 李杰勤, 卢杰, 詹秋文. 高粱非编码区SSR引物设计以及e-PCR的验证. 种子, 2010, 29(9): 1-6, 12.
Lu J B, Li J Q, Lu J, Zhan Q W. Design of SSR primers and verification of e-PCR in non-coding regions of sorghum genome. Seed, 2010, 29(9): 1-6, 12. (in Chinese)
[38]   Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 2000, 10(7): 967-981.
[39]   高亚梅, 韩毅强, 汤辉, 孙东梅, 王彦杰, 王伟东. 根瘤菌基因组内简单重复序列的分析. 中国农业科学, 2008, 41(10): 2992-2998.
Gao Y M, Han Y Q, Tang H, Sun D M, Wang Y J, Wang W D. Analysis of simple sequence repeats in rhizobium genome. Scientia Agricultura Sinica, 2008, 41(10): 2992-2998. (in Chinese)
[40]   Sia E A, Kokoska R J, Dominska M, Greenwell P, Petes T D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Molecular and Cellular Biology, 1997, 17(5): 2851-2858.
[41]   Harry B, Schlötterer C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics, 2000, 155: 1213-1220.
[42]   Lee S B, Kaittanis C, Jansen R K, Hosterler J B, Tallon L J, Town C D, Daniell H. The complete chloroplast genome sequence of Gossypium hisutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics, 2006, 7: 61-72.
[43]   尚明照, 刘芳, 华金平, 王坤波. 陆地棉叶绿体基因组密码子使用偏性的分析. 中国农业科学, 2011, 44(2): 245-253.
Shang M Z, Liu F, Hua J P, Wang K B. Analysis on codon usage of chloroplast genome of Gossypium hirsutum. Scientia Agricultura Sinica, 2011, 44(2): 245-253. (in Chinese)
[44]   Sangwan I, O′brian M R. Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiology, 2002, 129: 1788-1794.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[5] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[11] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[12] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[13] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[14] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[15] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!