Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (8): 1518-1526.doi: 10.3864/j.issn.0578-1752.2015.08.06

• PLANT PROTECTION • Previous Articles     Next Articles

Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms

ZHOU Xin-li1, ZHAN Gang-ming1,2, HUANG Li-li1,2, HAN De-jun1,3, KANG Zhen-sheng1,2   

  1. 1State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi
    2College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi
    3College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2014-11-04 Online:2015-04-16 Published:2015-04-16

Abstract: 【Objective】 Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. The objective of this study is to evaluate the resistance to current Chinese predominant stripe rust races in eighty abroad spring wheat germplasms, and these lines could be selected for their good resistance for genetic improvement of wheat stripe rust resistance breeding programs in the future in China. 【Method】 Eighty germplasms were tested with Chinese predominant stripe rust races CYR29, CYR31, CYR32, CYR33 and pathogenic types PST-HY8 and PST-V26 at seedling stage in greenhouse. Mingxian 169 and AvS as susceptible cultivars were also tested at same time. And field resistance evaluations were conducted at Yangling (Shaanxi province) and Tianshui (Gansu province) in 2013 and 2014, respectively. Based on the seedling and field reactions, the resistance of the germplasms was classified and assessed. 【Result】 The eighty germplasms could be classified into three groups. The first group consisted of eight lines that showed all-stage resistance. PI660067, PI660119 and PI660122 showed high level resistance at seedling stage and adult-plant stage in the field tests. The remaining five lines (PI660056, PI607839, PI591045, TA5602 and PI660064) showed susceptibility to individual races at seedling stage, and also showed susceptibility at adult-plant stage in different years and different test sites. The second group consisted of twenty-eight lines that showed adult-plant resistance. The lines in this group showed susceptibility to all tested races at seedling stage, and twenty-three lines showed resistance at adult-plant stage in the field tests. But PI660075, PI660083, PI660085, PI660097 and PI660107 showed susceptibility at adult-plant stage in different years and different test sites. The third group consisted of forty-four lines that showed adult-plant resistance and ineffective all-stage resistance to part of Chinese stripe rust races. The lines in this group show susceptible to at least one of the races in the seedling tests and thirty-seven lines showed resistance at adult-plant stage in the field. But PI660065, PI660076, PI660079, PI660080, PI660095, PI660096 and PI610750 showed susceptibility at adult-plant stage in different years and different test sites.【Conclusion】The majority of the eighty abroad wheat germplasms showed excellent resistance to most popular Chinese wheat stripe rust races. These germplasms should be useful in diversifying resistance genes that can be used in breeding programs for developing wheat cultivars with stripe rust resistance. Probably due to different new races popular in field in different years, causing some adult-plant resistance lines were susceptible in different years and different test sites, which indicated that adult-plant resistance might also have race-specific resistance.

Key words: spring wheat, wheat germplasm resource, disease resistance, wheat stripe rust; Puccinia striiformis f. sp. tritici

[1]    李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002: 370-373.
Li Z Q, Zeng S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 370-373. (in Chinese)
[2]    何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44(11): 2193-2215.
He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215. (in Chinese)
[3]    Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88(8): 896-904.
[4]    韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种 (系)抗条锈病性评价. 中国农业科学, 2010, 43(14): 2889-2896.
Han D J, Wang Q L, Zhang L, Wei G R, Zeng Q D, Zhao J, Wang X J, Huang L L, Kang Z S. Evaluation of resistance of current wheat cultivars to stripe rust in northwest China, north China and the middle and lower reaches of Changjiang River epidemic area. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896. (in Chinese)
[5]    杨作民, 解超杰, 孙其信. 后条中32时期我国小麦条锈抗源之现状. 作物学报, 2003, 29(2): 161-168.
Yang Z M, Xie C J, Sun Q X. Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agronomica Sinica, 2003, 29(2): 161-168. (in Chinese)
[6]    吴立人, 牛永春. 我国小麦条锈病持续控制的策略. 中国农业科学, 2000, 33(5): 46-54.
Wu L R, Niu Y C. Strategies of sustainable control of wheat stripe rust in China. Scientia Agricultura Sinica, 2000, 33(5): 46-54. (in Chinese)
[7]    李小军, 徐鑫, 刘伟华, 李秀全, 杨欣明, 李立会. 应用SSR分子标记分析国外种质对我国小麦品种的遗传贡献. 作物学报, 2009, 35(5): 778-785.
Li X J, Xu X, Liu W H, Li X Q, Yang X M, Li L H. Genetic contribution of introduced varieties to wheat breeding in China evaluated using SSR markers. Acta Agronomica Sinica, 2009, 35(5): 778-785. (in Chinese)
[8]    袁汉民, 张富国, 陈东升, 袁海静, 王晓亮, 亢玲, 张维军, 何进尚. 宁夏国外小麦种质资源考察、引进和利用. 植物遗传资源学报, 2012, 13(2) : 308-312.
Yuan H M, Zhang F G, Chen D S, Yuan H J, Wang X L, Kang L, Zhang W J, He J S. Foreign wheat germplasm investigation, introduction and utilization in Ningxia. Journal of Plant Genetic Resources, 2012, 13(2): 308-312. (in Chinese)
[9]    黄惠, 胡琳, 王根松, 张瑞奇, 许为钢. 意大利小麦种质资源材料的引进与评价. 河南农业科学, 2003(9): 8-11.
Huang H, Hu L, Wang G S, Zhang R Q, Xu W G. The introduction and evaluation on wheat germplasm from Italy. Journal of Henan Agricultural Sciences, 2003(9): 8-11. (in Chinese)
[10]   李艳丽, 张军, 鲁敏, 武军, 赵继新, 杜万里, 庞玉辉, 王亮明, 刘淑会, 杨群慧, 陈新宏. 67份引进美国小麦种质材料的农艺性状调查和抗病性鉴定. 麦类作物学报, 2013, 33(4): 777-783.
Li Y L, Zhang J, Lu M, Wu J, Zhao J X, Du W L, Pang Y H, Wang L M, Liu S H, Yang Q H, Chen X H. Evaluation of agronomical characteristics and disease resistance in wheat germplasm introduced from American. Journal of Triticeae Crops, 2013, 33(4): 777-783. (in Chinese)
[11] 白玉路, 孙权, 张春宇, 崔娜, 林凤, 徐世昌, 章振羽, 高阳, 徐晓丹. 美国西北部59个小麦品种 (系)抗条锈病基因分子检测及对中国条锈菌系抗性鉴定. 中国农业科学, 2010, 43(6): 1147-1155.
Bai Y L, Sun Q, Zhang C Y, Cui N, Lin F, Xu S C, Zhang Z Y, Gao Y, Xu X D. Molecular detection and resistance evaluation of 59 cultivars from the northwest of the United States to Chinese stripe rust races. Scientia Agricultura Sinica, 2010, 43(6): 1147-1155. (in Chinese)
[12]   Wang M N, Chen X M, Xu L S, Cheng P, Bockelman H. Registration of 70 common spring wheat germplasm lines resistant to stripe rust. Journal of Plant Registrations, 2012, 6: 104-110.
[13]   庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 421-443.
Zhuang Q S. Improvement and Pedigree Analysis of Chinese Wheat.Beijing: China Agriculture Press, 2003: 421-443. (in Chinese)
[14]   Zhou X L, Wang W L, Wang L L, Hou D Y, Jing J X, Wang Y, Xu Z Q, Yao Q, Yin J L, Ma D F. Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theoretical and Applied Genetics, 2011, 123(3): 431-438.
[15]   Zhou X L, Han D J, Chen X M, Gou H L, Guo S J, Rong L, Wang Q L, Huang L L, Kang Z S. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theoretical and Applied Genetics, 2014, 127(11): 2349-2358.
[16]   Chen X M, Line R F. Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 1995, 85(5): 567-572.
[17]   Wan A M, Chen X M, He Z H. Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58: 605-619.
[18]   Chen X M. Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3): 608-627.
[19]   Li Q, Chen X M, Wang M N, Jing J X. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theoretical and Applied Genetics, 2011, 122(1): 189-197.
[20]   Sui X X, Wang M N, Chen X M. Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology, 2009, 99(10): 1209-1215.
[21]   Cheng P, Chen X M. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theoretical and Applied Genetics, 2010, 121(1): 195-204.
[22]   Vasu K, Parveen C, Harcharan S D, Satinder K, Robert L B, Bikram S G. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 2007, 114: 1379-1389.
[23]   Cheng P, Xu L S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theoretical and Applied Genetics, 2014, 127(10): 2267-2277.
[24]   Ren R S, Wang M N, Chen X M, Zhang Z J. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics, 2012, 125(5): 847-857.
[25]   Zhou X L, Wang M N, Chen X M, Lu Y, Kang Z S, Jing J X. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theoretical and Applied Genetics, 2014, 127(4): 935-945.
[26]   Lin F, Chen X M. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. Theoretical and Applied Genetics, 2009, 118(4): 631-642.
[27]   Lin F, Chen X M. Genetics and molecular mapping of genes for race- specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 2007, 114(7): 1277-1287.
[28]   Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and Applied Genetics, 2011, 123: 143-157.
[29]   Lu Y, Wang M N, Chen X M, See D, Chao S M, Jing J X. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theoretical and Applied Genetics, 2014, 127(6): 1449-1459.
[30]   Ellis J G, Lagudah E S, Spielmeyer W, Dodds P N. The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 2014, 5: 1-13.
[31]   McIntosh R A, Wellings C R, Park R F. Wheat Rusts: An Atlas of Resistance Genes. Melbourne: CSIRO Publishing, 1995.
[32]   Johnson R. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding//Simmonds N W, Rajaram S, eds. Breeding Strategies for Resistance to the Rusts of Wheat. Mexico: CIMMYT, 1988.
[33]   Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J. Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theoretical and Applied Genetics,2011, 123(8): 1401-1411.
[34]   Sthapit J, Gbur E E, Brown-Guedira G, Marshall D S, Milus E A. Characterization of resistance to stripe rust in contemporary cultivars and lines of winter wheat from the eastern United States. Plant Disease, 2012,96(5): 737-745.
[35]   Sørensen C, Hovmøller M, Leconte M, Dedryver F, de Vallavieille-Pope C. New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology, 2014,104(10): 1042-1051.
[36]   陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46(20): 4254-4262.
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262. (in Chinese)
[1] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] BiJiao MA,ZhiWen GOU,Wen YIN,AiZhong YU,ZhiLong FAN,FaLong HU,Cai ZHAO,Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[10] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[11] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[12] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
[13] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[14] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[15] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!