Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (7): 1249-1261.doi: 10.3864/j.issn.0578-1752.2015.07.01

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Female Gametophyte Genotype Selection and Its Progeny Phenotypic Genetic Differentiation in Rice at Different Altitude Condition

LEI Wei1, WEN Jian-cheng1,2, PU Shi-huang1, WANG Chang-jiang1, LIU Hua-ping1, SUN Chao-hua1SU Jia-xiu1, LI Zhen1, XU Jin1,2, TAN Ya-ling1,2, JIN Shou-lin1,2, TAN Xue-lin1,2   

  1. 1Rice Research Institute, Yunnan Agricultural University, Kunming 650201
    2Key Lab of Molecular Breeding for Dian-Type Japonica Hybrid Rice, Yunnan Education Department, Kunming 650201
  • Received:2014-10-23 Online:2015-04-01 Published:2015-04-01

Abstract: 【Objective】 Understanding of rice female gametophyte genotype selection effect and its progeny phenotypic genetic differentiation at different altitude condition could be given a reference for developing breeding method of female gametophyte genotype selection affected by altitude-based change. 【Method】 Four sites with obvious altitude difference were selected to produce and grow seven F1 female gametophyte genotype selection (FGGS) populations and its 28 F2 progeny segregation (PS) populations generated by crosses between two rice CMS-D1 lines and two cold tolerant japonica landrances, respectively, and then through analysis of the variation of morphological characters of these populations to learn whether the presentations of female gametophyte genotypic frequency variation and its progeny phenotypic genetic differentiation were associated with different altitude backgrounds. 【Result】 Eight morphological characters of the F1 FGGS populations at the four altitude sites were detected that significant genetic segregation distortions caused by female gametophyte genotype selection which derived from the effect of different altitude conditions, and the influence of two altitudes at 2 200 m and 400 m was greater than that of 1 860 m and 1 250 m, respectively. However, the FGGS populations produced at the altitude of 1 860 m presented the greatest diversity index of morphological characters, and then the index decreased with increase or reduction of the altitude. Comparison of the character variations of these FGGS populations generated at the four altitudes showed a significant difference between at 2 200 m and the other three altitudes. In addition, significant phenotypic genetic differentiation, which resulted from selection of the F1 female gametophyte genotypes affected by different altitude backgrounds, was screened in their all 28 F2 PS populations grown at the four altitudes, and also found bigger segregation while the selection derived from the largely different altitude environments. There were 21 significant differences involved in seven characters of the PS populations derived from two extreme altitudes between the highest altitude of 2 200 m and the lowest altitude of 400 m, and were only six differences involved in three characters from the both middle altitudes 1 860 m and 1 250 m. An essential change was found that the populations selected by the highest altitude had the highest average seed setting rate and poor growth potential, and by the lowest altitude showed the opposite trend against that of the highest, and by the two middle altitudes appeared larger diversified index of morphological characters. 【Conclusion】 The effect of F1 female gametophyte genotype selection caused by pressure of different growing altitude environments was detected, which is an important factor leading to show phenotypic genetic segregation of its progeny populations, and then to develop new features adapting to corresponding ecological environment. So it is feasible for developing breeding method of female gametophyte genotype selection caused by altitude condition difference.

Key words: rice (Oryza sativa L.), selection of female gametophyte, genetic differentiation, altitude condition, temperature

[1]    包仁艳, 姜春宁, 郑彩霞, 丁坤善. 植物雌配子体发育的分子调控研究进展. 北京林业大学学报, 2005, 27(4): 90-96.
Bao R Y, Jiang C N, Zheng C X, Ding K S. Molecular mechanism of the regulation of female gametophyte development in plants. Journal of Beijing Forestry University, 2005, 27(4): 90-96. (in Chinese)
[2]    邸娜, 王晓楠, 刘保东. 巢厥配子体的新观察. 植物研究, 2007, 27(4): 398-401.
Di N, Wang X N, Liu B D. Newly observed on the gametophyte of neottoperis. Bulletin of Botanical Research, 2007, 27(4): 398-401. (in Chinese)
[3]   Twell D. The diversity and regulation of gene expression in the pathway of male gametophyte development//Scott R J, Stead A D. Molecular and Cellular Aspects of Plant Reproduction. Cambridge University Press, London, UK, 1997: 83-135.
[4]    Mulcahy D L. The rise of the angiosperms: A genecological factor. Science, 1979, 206(4414): 20-23.
[5]    Pederson S, Simonsen V, Loeschke V. Overlap of gametophytic and sporophytic gene expression in barley. Theoretical and Applied Genetics, 1987, 75: 200-206.
[6]    Zamir D, Tanksley S D, Jones R A. Low temperature effect on selective fertilization by pollen mixtures of wild and cultivated tomato species. Theoretical and Applied Genetics, 1981, 59: 235-238.
[7]    何光华, 郑家奎, 阴国大, 杨正林. 水稻亚种间杂种配子育性的研究. 中国水稻科学, 1994, 8(3): 177-180.
He G H, Zheng J K, Yin G D. Yang Z L. Game fertility of F1 between Indica and Japonica. Chinese Journal of Rice Science, 1994, 8(3): 177-180. (in Chinese)
[8]    Antonovics J. The effects of a heterogeneous environment on the genetics of natural populations. American Scientist, 1971, 59(5): 593-599.
[9]    Tollenaar M, Daynard T B, Hunter R B. Effect of temperature on rate of leaf appearance and flowering date in maize. Crop Science, 1979, 19: 336-366.
[10]   余昌俊, 王绍柏, 曹斌. 利用海拔温差调控种植天麻的研究. 农业生物技术科学, 2008, 9(124): 48-53.
Yu C J, Wang S B, Cao B. The study on cultivating Rhizoma Gastrodiae through regulating temperature difference of altitude. Chinese Agricultural Science Bulletin, 2008, 9(124): 48-53. (in Chinese)
[11]   Jones D F. Selective fertilization in pollen mixtures. The Biological Bulletin, 1920, 38: 251-289.
[12]   孟金陵. 花粉选择的研究进展. 遗传, 1990, 12(5): 39-42.
Meng J L. The research progress of pollen to choose. Hereditas,1990, 12(5): 39-42. (in Chinese)
[13]   Rajora O P, Zsuffa L. Atypical seedlings of populus L: Their genetic significance and value in breeding. Silvae Genetica, 1986, 35(2/3): 122-124.
[14]   Willing R P, Mascarenhas J P. Analysis of the complexity and diversity of mRNAs from pollen and shoots of tradescantia. Plant Physiology, 1984, 75: 865-868.
[15]   徐云碧, 申宗坦, 陈英, 朱立煌. 水稻籼粳杂种F2群体中RFLP标记的异常分离及其染色体分布. 植物学报, 1995, 37(2): 91-96.  
Xu Y B, Shen Z T, Chen Y, Zhu L H. Distorted segregations of RFLP marker and their distribution on chromosomes in an Indica/Japonica F2 population of rice (Oryza sativa L.). Acta Botanica Sinica, 1995, 37(2): 91-96. (in Chinese)
[16]   郭晶心, 刘耀光. 水稻籼粳杂交F2群体中分子标记的异常分离及染色体定位. 分子植物育种, 2003, 1(3): 331-336.
Guo J X, Liu Y G. Distorted segregation of molecular markers and their distribution on chromosomes in an Indica/Japonica F2 population of rice (Oryza sativa L.). Molecular Plant Breeding, 2003, 1(3): 331-336. (in Chinese)
[17]   姜树坤, 钟鸣, 徐正进, 张丽, 张喜娟, 马慧, 陈丽静, 郭志富. 水稻相关序列扩增多态性反应体系的建立及其多态性位点在F2群体钟的分离分析. 中国水稻科学, 2007, 21(5): 464-468.
Jiang S K, Zhong M, Xu Z J, Zhang L, Zhang X J, Ma H, Chen L J, Guo Z F. Establishment of sequence related amplification polymorphism and segregation of the polymorphic loci in F2 population for rice. Chinese Journal of Rice Science, 2007, 21(5): 464-468. (in Chinese)
[18]   Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics, 2002, 160: 313-322.
[19]   Woodward F I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia, 1986, 70: 580-586.
[20]   郭柯, 李渤生, 郑度. 喀喇昆仑山-昆仑山地区植物区系组成和分布规律的研究. 植物生态学报, 1997, 21(2): 105-144.
Guo K, Li B S, Zheng D. Floristic composition and distribution in the Kara-korum-Kunlun mountains. Chinese Journal of Plant Ecology, 1997, 21(2): 105-144. (in Chinese)
[21]   丁颖. 中国栽培稻种的起源及其演变. 农业学报, 1957, 8(3): 243-260.
Ding Y. The origin and evolution of cultivated rice in China. Acta Agriculturae, 1957, 8(3): 243-260. (in Chinese)
[22]   王象坤, 张居中. 中国稻作起源于演化. 科学通报, 1998, 43(22): 2354-2363.
Wang X K, Zhang J Z. Rice culture and evolution in China. Chinese Science Bulletin, 1998, 43(22): 2354-2363. (in Chinese)
[23]   高丽, 杨波. 湖北野生春兰资源遗传多样性的ISSR分析. 生物多样性, 2006, 14(3): 250-257.
Gao L, Yang B. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on ISSR analysis. Biodiversity Science, 2006, 14(3): 250-257. (in Chinese)
[24]   王丽娜, 李毅, 陈晓阳. 祁连山青海云杉天然群体表型性状遗传多样性分析. 林业科学, 2008, 2(44): 70-77.
Wang L N, Li Y, Chen X Y. Phenotypic diversity of natural populations in Picea crassifolia in Qilian mountains. Scientia Silvae Sinicae, 2008, 2(44): 70-77. (in Chinese)
[25]   龚顺良. 高寒山区对玉米杂交种生物学性状和品质影响的研究[D]. 重庆: 西南农业大学, 2004.
Gong S L. The research of maize hybrid on the effects of biological character and quality in different altitude at highland and cold area[D]. Chongqing: Agricultural University of Southwest, 2004. (in Chinese)
[26]   邹长松, 余迪求. 植物有性生殖对温度胁迫反应的研究进展. 云南植物研究, 2010, 32(6): 508-518.
Zou C S, Yu D Q. Temperature stress on plant sexual reproduction. Acta Botanica Yunnanica, 2010, 32(6): 508-518. (in Chinese)
[27]   Hormaza J I, Herrero M. Male gametophytic selection as a plant breeding tool. Scientia Horticulturae, 1996, 65(4): 321-333.
[28]   Howden R, Paek S K, Moore J M, Orme J, Grossniklaus U, Twell D. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics, 1998, 149: 621-631.
[29]   Ravikumar R L, Patil B S. Effect of gamete selection on segregation of wilt susceptibility-linked DNA marker in chickpea. Current Science, 2004, 86(5): 642-643.
[30]   王石华, 谭亚玲, 谭学林, 文建成, 寇姝燕, 金寿林, 洪汝科. 籼粳稻细胞质背景下Rf-1位点PCR标记的遗传分离研究. 分子植物育种, 2009, 7(3): 456-460.
Wang S H, Tan Y L, Tan X L, Wen J C, Kou S Y, Jin S L, Hong R K. Genetic segregation of PCR marker located with in Rf-1 locus under cytoplasmic backgrounds donated by Indica and Japonica rice. Molecular Plant Breeding, 2009, 7(3): 456-460. (in Chinese)
[31]   张云, 谭学林, 谭亚玲, 文建成, 王石华, 王昌江, 雷伟, 成晨. 海拔及细胞质背景对水稻分离群体Rf-1位点基因型频率的影响. 分子植物育种, 2010, 8(3): 439-445.
Zhang Y, Tan X L, Tan Y L, Wen J C, Wang S H, Wang C J, Lei W, Cheng C. Effects of altitude and cytoplasm factors on genotype frequency of rice segregated populations at Rf-1 locus. Molecular Plant Breeding, 2010, 8(3): 439-445. (in Chinese)
[32]   王昌江, 文建成, 雷伟, 谭学林. 一个位于水稻 Rf-1基因的InDel标记遗传分离对海拔和细胞质的响应. 分子植物育种, 2011, 9(2): 150-155.
Wang C J, Wen J C, Lei W, Tan X L. Response of genetic segregation of an InDel marker located at Rf-1 locus to variation of altitude and cytoplasm in rice. Molecular Plant Breeding, 2011, 9(2): 150-155. (in Chinese)
[33]   王石华, 谭学林, 谭亚玲. 不同海拔下水稻正反交F 2 群体的孕穗期耐冷性研究. 云南农业大学学报, 2011, 26(6): 755-760.
Wang S H, Tan X L, Tan Y L. Study on cold tolerance at booting stage of rice reciprocal F2 populations generated from the hybrids grown under differert altitudes. Journal of Yunnan Agricultural University, 2011, 26(6): 755-760. (in Chinese)
[34]   韩龙植, 乔永利, 张三元, 曹桂兰, 叶昌荣, 徐福荣, 戴陆园, 芮钟斗, 高熙宗. 不同生长环境下水稻主要农艺性状的QTL分析. 中国农业科学, 2005, 38(6): 1080-1087.
Han L Z, Qiao Y L, Zhang S Y, Cao G L, Ye C R, Xu F R, Dai L Y, Rui Z D, Gao X Z. QTL analysis of some agronomic traits in rice under different growing environments. Scientia Agricultura Sinica, 2005, 38(6): 1080-1087. (in Chinese)
[35]   Satake T, Hayase H. Male sterility caused by cooling treatment at the young microspore stage in rice plants V. Estimation of pollen development stage and the most sensitive stage to coolness. Proceedings of the Crop Science Society of Japan, 1970, 39: 468-473.
[36]   张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 贺治洲, 王明. 抽穗开花期高温对水稻剑叶理化特性的影响. 中国农业科学, 2007, 40(7): 1345-1352.
Zhang G L, Chen L Y, Zhang S T, Liu G H, Tang W B, He Z Z, Wang M. Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Scientia Agricultura Sinica, 2007, 40(7): 1345-1352. (in Chinese)
[37]   雷伟, 王昌江, 普世皇, 金艳, 何婷婷, 谭学林, 洪汝科, 金寿林, 张忠林, 谭亚玲, 文建成. 种植海拔差异对水稻雄配子体基因型的选择效应. 分子植物育种, 2013, 11: 1197-1205.
Lei W, Wang C J, Pu S H, Jin Y, He T T, Tan X L, Hong R K, Jin S L, Zhang Z L, Tan Y L, Wen J C. Effect of male gametophyte genotype selection in rice under different grown altitude condition. Molecular Plant Breeding, 2013, 11: 1197-1205. (in Chinese)
[38]   高丽, 杨波. 湖北野生春兰资源遗传多样性的ISSR分析. 生物多样性, 2006, 14(3): 250-257.
Gao L, Yang B. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on ISSR analysis. Biodiversity Science, 2006, 14(3): 250-257. (in Chinese)
[39]   赵春芳, 陈国娟, 王芋华, Helena K, 李春阳. 利用RAPD标记分析卧龙自然保护区不同海拔沙棘种群的遗传变异. 应用与环境生物学报, 2007, 13(6): 753-758.
Zhao C F, Chen G J, Wang Y H, Helena K, Li C Y. Genetic variation of Hippophae rhamnoides populations at different altitudes in the Wolong nature reserve based on RAPDs. Chinese Journal of Applied & Environmental Biology, 2007, 13(6): 753-758. (in Chinese)
[40]   唐丁, 郭龙彪, 曾大力, 张光恒, 程祝宽, 钱前. 两例水稻极端异常分离现象的遗传分析. 遗传, 2006, 28(10): 1259-1264.
Tang D, Guo L B, Zeng D L, Zhang G H, Cheng Z K, Qian Q. Genetic analysis of two extremely eegregation distorted populations in rice (Oryza sativa L.). Hereditas, 2006, 28(10): 1259-1264. (in Chinese)
[41]   Nakagahra M. Genetic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice. Japan Journal Breed, 1972, 22(4): 232-238
[42]   Xie C Y, Ying C C. Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp. Latifolia) in Canada. Canadian Journal of Forest Research, 1995, 25: 2010-2021.
[43]   Jonas C S, Geber M A. Variation among populations of (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany, 1999, 86: 333-343.
[44]   曾杰, 郑海水, 甘四明, 白嘉雨. 广西西南桦天然居群的表型变异. 林业科学, 2005, 41(2): 59-65.
Zeng J, Zheng H S, Gan S M, Bai J Y. Phenotypic variation in natural populations of betula alnoides in Guangxi, China. Scientia Silvae Sinicae, 2005, 41(2): 59-65. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[11] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[12] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[13] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[14] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[15] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!