Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (5): 1002-1010.doi: 10.3864/j.issn.0578-1752.2015.05.18

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Diversity Analysis of 98 Collections of Sugarcane Germplasm with AFLP Markers

ZAN Feng-gang, YING Xiong-mei, WU Cai-wen, ZHAO Pei-fang, CHEN Xue-kuan, MA Li, SU Huo-sheng, LIU Jia-yong   

  1. Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan
  • Received:2014-08-26 Online:2015-03-01 Published:2015-03-01

Abstract: 【Objective】Cane sugar accounts for 92% of sugar production in China, and hybridization is the most widely used and the most effective way for developing new sugarcane cultivars. Sugarcane germplasm is essential for sugarcane breeding. Selecting parental clones and the cross combinations for hybridization contributes directly to the breeding efficiency. Aimed at providing reference for selecting parental clones and cross combinations, the genetic diversity and similarity among 98 sugarcane germplasm were studied.【Method】Good genomic DNA was extracted from young leaves of 98 sugarcane germplasm collected from 10 countries following the CTAB method, and then were amplified by sequence-related amplified polymorphism molecular markers to analyze genetic diversity and genetic similarity. Separation of the amplified fragments was performed on 5% denaturing polyacrylamide gels, the gels were stained with AgNO3, then “0,1” matrix was obtained according to the electrophoresis result. The number of polymorphic loci, percentage of polymorphic loci, quantity of polymorphic information, effective number of alleles and the indexes of genetic diversity were estimated by POPGENE version 32. The genetic similarity that estimated by NTSYS pc-V. 2.1 was used for UPGMA (unweighted pair group method analysis) and PCA (principal component analysis) to group the sugarcane germplasm. 【Result】Among 1 392 bands detected by 10 selective primer pairs proved by Yunnan Key Laboratory of Sugarcane Genetic Improvement, 1 344 (96.55%) were polymorphic. On average, each primer combination amplified 139.2 loci and 134.4 polymorphic loci. The genetic similarity of 98 sugarcane germplasm ranged from 0.484 to 0.929 with an average of 0.734, the number of polymorphic information was 0.2495, the number of effective alleles for each loci was 1.4092, the average index of genetic diversity was 0.3890. The highest genetic similarity (0.929) was found between KN90-418 and KN90-455, and the lowest (0.484) was found between Yunzhe94-375 and IS76-126. According to the genetic similarity of 0.64, 98 sugarcane germplasm were divided into 4 groups, 5 sugarcane germplasm IK76-48, IS76-126, IK76-22, SES309 and E.SARPET collected from Australia was classified as group I. 1 sugarcane germplasm IS76-199 collected from Australia was classified as group II. KN93-06, 90-110-9 and BURMA were classified as group III; other 89 sugarcane germplasm were classified as group IV which was divided into 9 subgroups (A, B, C, D, E, F, G, H and I ) at the genetic similarity of 0.79. The coefficient of Jaccard was used in PCA and indicated a similar result with cluster analysis that the germplasm with the same region shares high similarity, the similarity within Australian sugarcane germplasm was much lower, and the lowest was found within the germplasm belongs to Erianthus fulvus or Saccharum spontaneum. 【Conclusion】It was concluded that 98 sugarcane germplasm share high genetic similarity and low genetic diversity, the Australian sugarcane germplasm is relatively high in genetic diversity. 90-110-9, KN93-06 and Yuetang00-236 are 3 unique germplasm and are worth utilizing in hybridization.

Key words: sugarcane, germplasm, AFLP, genetic diversity

[1]    AitkenK S, Li J C, Jackson P, Piperidis G, McIntyre C L. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Australian Journal of Agricultural Research, 2006, 57: 1167-1184.
[2]    Selvi A, Nair N V, Noyer J L, Singh N K, Balasundaram N, Bansal K C, Koundal K R, Mohapatra T. AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genetic Resources and Crop Evolution, 2006, 53: 831-842.
[3]    劳方业, 刘睿, 何慧怡, 邓海华, 陈仲华, 陈健文, 符成, 张垂明, 杨业后. 崖城系列甘蔗亲本遗传多样性的AFLP标记分析. 分子植物育种, 2008, 6(3): 517-522.
Lao F Y, Liu R, He H Y, Deng H H, Chen Z H, Chen J W, Fu C, Zhang C M, Yang Y H. AFLP analysis of genetic diversity in series sugarcane parents developed at HSBS. Molecular Plant Breeding, 2008, 6(3): 517-522. (in Chinese)
[4]    Schenck S, Crepeau M W, Wu K K, Moore P H, Yu Q, Ming R. Genetic diversity and relationships in native Hawaiian Saccharum officinarum sugarcane.Journal of Heredity, 2004, 95: 327-331.
[5]    Aitken K S, Jackson P A, Mclntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics, 2005, 110(5): 789-801.
[6]    Pan Y B. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 2006, 8(4): 246-256.
[7]    Pan Y B, Burner D M, Legendre B L. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica, 2000, 108: 285-295.
[8]    Besse P, McIntyre C L, Berding N. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae). Theoretical and Applied Genetics, 1996, 92(6): 733-743.
[9]    Besse P, McIntyre C L, Berding N. Characterisation of Erianthus sect, Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica, 1997, 93(3): 283-292.
[10] Nair N V, Nair S, Sreenivasan T V, Mohan M. Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genetic Resources and Crop Evolution, 1999, 46: 73-79.
[11]   王英, 庄南生, 高和琼, 黄东益. 甘蔗种质遗传基础的ISSR分析. 湖南农业大学学报: 自然科学版, 2007, 33(4): 176-183.
Wang Y, Zhuang N S, Gao H Q, Huang D Y. ISSR analysis for sugarcane germplasm. Journal of Hunan Agricultural University: Natural Sciences, 2007, 33(4): 176-183. (in Chinese)
[12]   庄南生, 郑成木, 黄东益, 唐燕琼, 高和琼. 甘蔗种质遗传基础的AFLP分析. 作物学报, 2005, 31: 444-450.
Zhuang N S, Zheng C M, Huang D Y, Tang Y Q, Gao H Q. AFLP analysis for sugarcane germplasms. Acta Agronomica Sinica, 2005, 31: 444-450. (in Chinese)
[13]   李鸣, 谭裕模, 李杨瑞, 李容柏, 高国庆. 甘蔗(Saccharum officinarum L.)品种遗传差异的AFLP分子标记分析. 作物学报, 2004, 30: 1008-1013.
Li M, Tan Y M, Li Y R, Li R B, Gao G Q. AFLP molecular analysis of genetic difference between cultivars in sugarcane (Saccharum officinarum L). Acta Agronomica Sinica, 2004, 30: 1008-1013. (in Chinese)
[14]   刘新龙, 毛钧, 陆鑫, 马丽, Karen S A, Phillip A J, 蔡青, 范源洪. 甘蔗SSR和AFLP分子遗传连锁图谱构建. 作物学报, 2010, 36: 177-183.
Liu X L, Mao J, Lu X, Ma L, Karen S A, Phillip A J, Cai Q, Fan Y H. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agronomica Sinica, 2010, 36: 177-183. (in Chinese)
[15]   蔡青, 范源洪, Aitken K, Piperidis G, McIntyre C L, Jackson P. 利用AFLP进行“甘蔗属复合体”系统演化和亲缘关系研究. 作物学报, 2005, 31(5): 551-559.
Cai Q, Fan Y H, Aitken K, Piperidis G, McIntyre C L, Jackson P. Assessment of the phylogenetic relationships within the “Saccharum Complex”using AFLP markers. Acta Agronomica Sinica, 2005, 31(5): 551-559. (in Chinese)
[16]   Harvey M, Huckett B I, Botha F C. Use of polymerase chain reaction (pcr), and random amplification of polymorphic DNAs, RAPDs, for the determination of genetic distances between 21 sugarcane varieties. Proceeding of South African Sugar Technologists Association, 1994, 68: 36-40.
[17]   Nair N V, Selvi A, Sreenivasan T V, Pushpalatha K N. Molecular diversity in indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica, 2002, 127: 219-225.
[18]   Lima M L A, Garcia A A F, Oliveira K M, Matsuoka S, Arizono H, Souza C L J, Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp). Theoretical and Applied Genetics, 2002, 104: 30-38.
[19刘家勇, 赵培方, 刘新龙, 赵俊, 杨昆, 吴才文, 应雄美, 昝逢刚, 陈学宽. 68份国外甘蔗种质资源遗传多样性的AFLP分析. 湖南农业大学学报: 自然科学版, 2013, 39(5): 466-470.
Liu J Y, Zhao P F, Liu X L, Zhao J, Yang K, Wu C W, Ying X M, Zan F G, Chen X K. Genetic diversity analysis on 68 foreign sugarcane germplasms(Saccharum spp.) with AFLP technique. Journal of Hunan Agricultural University: Natural Sciences, 2013, 39(5): 466-470. (in Chinese)
[20]   吴转娣, 昝逢刚, 赵丽宏, 罗遵喜, 张树珍. 甘蔗基因组DNA小量提取与大量提取方法研究. 生物技术通报, 2009(S1): 172-175.
Wu Z Z, Zan F G, Zhao L H, Luo Z X, Zhang S Z. Study on mini and mass-extraction methods of sugarcane genomic DNA. Biotechnology Bulletin, 2009(S1): 172-175. (in Chinese)
[21]   Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414.
[22]   刘新龙, 蔡青, 毕燕, 陆鑫, 马丽, 应雄美, 毛钧. 甘蔗AFLP标记和SSR标记的PAGE胶快速银染检测方法. 江苏农业学报, 2009, 25(2): 433-435.
Liu X L, Cai Q, Bi Y, Lu X, Ma L, Ying X M, Mao J. A rapid silver staining method for PAGE used in sugarcane AFLP and SSR molecular markers.Jiangsu Agricultural Sciences,2009, 25(2): 433-435. (in Chinese)
[23]   Nei M, Kumar S. Molecular Evolution and Phylogenetics. New  Yourk: Oxford University Press, 2000: 87-88.
[24]   劳方业, 刘睿, 何慧怡, 邓海华, 李奇伟, 陈仲华, 陈健文, 符成, 齐永文, 张垂明. 我国甘蔗亲本遗传多样性的AFLP标记分析. 基因组学与应用生物学, 2009, 28(3): 503-508.
Lao F Y, Liu R, He H Y, Deng H H, Li Q W, Chen Z H, Chen J W, Fu C, Qi Y W, Zhang C M. Genetic diversity analysis of sugarcane parents with AFLP in China. Genomics and Applied Biology, 2009, 28(3): 503-508. (in Chinese)
[25]   齐永文, 劳方业, 张垂明, 樊丽娜, 何慧怡, 刘少谋, 李奇伟, 邓海华.中美重要甘蔗种质SSR遗传多样性比较. 热带作物学报, 2011, 32(01): 99-104.
QiY W, Lao F Y, Zhang C M, Fan L N, He H Y, Liu S M, Li Q W, Deng H H. Comparative analysis of genetic diversity of Chinese and american sugarcane (Saccharum spp.) using SSR markers. Chinese Journal of Tropical Crops, 2011, 32(01): 99-104. (in Chinese)
[26]   吴才文, 赵培方, 夏红明, 杨昆, 吴转娣, 陈学宽, 覃伟, 漆丽萍, 刘家勇, 赵俊, 赵丽萍, 姚丽, 李纯佳, 昝逢刚, 陈建国,杨洪昌. 现代甘蔗杂交育种及选择技术. 北京: 科学出版社, 2014: 119-123.
Wu C W, Zhao P F, Xia H M, Yang K, Wu Z D,Chen X K,Qin W, Qi L P, Liu J Y, Zhao J, Zhao L P, Yao L, Li C J, Zan F G, Chen J G, Yang H C. Modern Cross Breeding and Selection Techniques in Sugarcane. Beijing: Science Press, 2014: 119-123. (in Chinese)
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[8] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[9] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[10] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[11] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[15] DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!