Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (2): 215-228.doi: 10.3864/j.issn.0578-1752.2015.02.02

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Production of Transgenic Maize Germplasm with Multi-Traits of Insect-resistance, Glyphosate-Resistance and Drought-Tolerance

SUN Yue1, LIU Xiu-xia1, LI Li-li2, GUAN Yun-yun1, ZHANG Ju-ren1   

  1. 1School of Life Science, Shandong University, Jinan 250100
    2Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2014-06-11 Online:2015-01-16 Published:2015-01-16

Abstract:

【Objective】 The objective of this experiment is to study the production of transgenic maize with triple resistance of insect, glyphosate and drought stress. 【Method】In this study, an expression vector harboring four target genes (cry1AcM, epsps, GAT and ZmPIS)was used to transform to maize elite inbred lines 9801 and Qi 319 (Q319) mediated by Agrobacterium, and produced transgenic maize plants with multiple modified traits. Based on herbicide resistance, PCR analysis, transcriptional analysis, western blot detection and insect resistance assay, six stable transgenic maize lines were selected from a large number of transgenic lines. Subsequently, the inbred lines 9801 and Q319 were used as the nontransgenic control to analyze the resistance of transgenic plants to Ostrinia furnacalis In view of different resistances to O. furnacalis of maize plants at different developmental stages, the resistance to O. furnacalis of transgenic plants at different developmental periods was tested indoor and in the fields by innoculating the worm of O. furnacalis, and kernels and the bracts of ears from transgenic plants at filling stage were used to feed the worm. In the herbicide resistance trials in fields, transgenic plants at the six-leaf stage were sprayed with 0.84 kg·hm-2 glyphosate (commercial application dosage) to evaluate the resistance of transgenic plants. A spraying experiment with triple dose of glyphosate on the plants at three-leaf stage was also performed to evaluate the glyphosate-resistant levels of transgenic lines. To evaluate the resistance of drought stress, the morphological changes of transgenic plants were observed and their photosynthesis and chlorophyll fluorescence were measured on plants at the 10-leaf stage in a drought stress treatment. 【Result】Among six stable transgenic maize lines, L1-L3 come from inbred line 9801 and line Q1-Q3 come from inbred line Q319. The stable expression of the four transgenic genes in the transgenic lines was confirmed by using RT-PCR assay. The levels of cry1Ac protein in the different transgenic lines were determined by Western blot, which showed reliable expression in various organs of the transgenic lines. Six lines with higher resistance to the corn borer compared with wild type were selected through the corn borer resistance experiment in the plants at vegetative stage and filling stage. For herbicide resistance trials, the glyphosate resistance of transgenic plants showed more tolerant than that of wild type control. During drought stress, the transgenic plants had more strong photosynthetic capacity and photosystem II activity than that of the nontransgenic control plants under drought stress conditions. 【Conclusion】The introduction of the cry1Ac-M, epsps, GAT, and ZmPIS genes into maize elite inbred lines increased the insect-resistance, glyphosate-tolerance, and improved the drought-resistance of transgenic plants, and the transgenic plant are up to the level of extensive utilization in corn production. Six new corn transgenic lines with excellent complex traits were obtained in this study., glyphosate and drought under strictly controlled experimental conditions.

Key words: resistance genetically modified maize, complex traits; insect resistance, herbicide tolerance, drought

[1]    Koziel M G, Beland G L, Bowman C, Carozzi N B, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji M R, Merlin E, Rhodes R, Warren G W, Wright M, Evola S V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nature Biotechnology, 1993, 11(2): 194-200.
[2]    林拥军, 张启发. 改造合成的苏云金芽胞杆菌杀虫晶体蛋白基因Cry2A: 中国, CN02139000.22004. 2004-03-10.
Lin Y J, Zhang Q F. Reforming composite insecticidal crystalline protein gene Cry2A of bacillus thuringiensis: China, CN02139000. 22004. 2004-03-10. (in Chinese)
[3]    刘允军. 人工改造的cry1Accry1Ae基因在大肠杆菌、转基因烟草和玉米中的表达[D]. 北京: 中国农业大学, 2004.  
Liu Y J. Expression of the modified cry1Ac, cry1Ae genes in E.coli transgepic tobacco plants and transgenic maize plants[D]. Beijing: China Agricultural University, 2004. (in Chinese)
[4]    岳润清, 李新海, 翁建峰, 谢传晓, 郝转芳, 铁双贵. 编码杀虫蛋白基因Cry1Ab-Ma其表达载体及应用: 中国, CN102094030A. 2011-06-15. (in Chinese)
Yue R Q, Li X H, Weng J F, Xie C X, Hao Z F, Tie S G. Pesticidal protein encoding gene Cry1Ab-Ma and expression vector and application thereof: China, CN102094030A. 2011-06-15. (in Chinese)
[5]    李圣彦, 郎志宏, 朱莉, 李秀影, 张杰, 何康来, 黄大昉. 利用密码子优化提高Bt cry1Ah基因在转基因玉米(Zea mays L.) 中的表达. 中国农业科技导报, 2012, 13(6): 20-26.
Li S Y, Lang Z H, Zhu L, Li X Y, Zhang J, He K L, Huang D F. Improvement of Bt cry1Ah gene expression in transgenic maize (Zea mays L.) through codon optimization. China Agricultural Science and Technology,2012, 13(6): 20-26. (in Chinese)
[6]    Zhu Q, Maher E A, Masoud S, Dixon R A, Lamb C J. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nature Biotechnology, 1994, 12(8): 807-812.
[7]    朱华晨, 徐新萍, 肖国樱, 袁隆平, 李宝健. 利用四价抗病基因提高超级杂交稻的抗性. 中国科学: C辑, 2006, 36(4): 320-327.
Zhu H C, Xu X P, Xiao G Y, Yuan L P, Li B J. Using transfered tetravalent genes to elevate the disease-resistence of super rice. Chinese Science: C series, 2006, 36(4): 320-327. (in Chinese)
[8]    Heck G, Armstrong C L, Astwood J D, Astwood C F, Behr J T, Bookout S M, Brown T A, Cavato D L, DeBoer M Y, Deng C, George J R, Hillyard C M, Hironaka A R, Howe E H, Jakse B E, Ledesma T C, Lee R P, Lirette M L, Mangano J N, Mutz Y, Qi R E, Rodriguez S R, Sidhu A, Silvanovich M A, Stoecker R A, Yingling J Y. Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. Crop Science, 2005, 45(1): 329-339.
[9]    Howe A R, Gasser C S, Brown S M, Padgette S R, Hart J, Parker G B, Fromm M E, Armstrong C L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Molecular Breeding, 2002, 10(3): 153-164.
[10]   赫福霞. 抗虫耐草甘膦多价转基因玉米的研究[D]. 哈尔滨: 东北农业大学, 2008.
Hao F X. Research on the insect-resistant/glyphosate-tolerant mutiple gene transformation in maize[D]. Harbin: Northeast Agricultural University, 2008. (in Chinese)
[11]   余桂容, 刘艳, 杜文平, 宋军, 张莲, 陆伟, 徐利远. 农杆菌介导的转双价基因耐草甘膦玉米研究. 分子植物育种, 2013, 11(3): 339-344.
Yu G R, Liu Y, Du W P, Song J, Zhang L, Lu W, Xu L Y. Studies on the Agrobacterium mediaed transformation of the bivalent gene conferring glyphosate tolerance into maize lines. Molecular Plant Breeding, 2013, 11(3): 339-344. (in Chinese)
[12]   Li B, Wei A, Song C, Li N, Zhang J. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal, 2008, 6(2): 146-159.
[13]   Zhang S J, Li N, Gao F, Yang A F, Zhang J R. Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Molecular Breeding, 2010, 26(3): 455-465.
[14]   Anstrom D, Hammond B, Headrick J, Heard J E. Drought tolerant corn with reduced mycotoxin: U.S., EP20080837878. 2008-10-10.
[15]   袁英, 李启云, 孔祥梅, 刘德璞. 转双价抗虫基因Bt-pta玉米植株的获得. 中国农学通报, 2006, 22(10): 131-134.
Yuan Y, Li Q Y, Kong X M, Liu D P. Synchronous expression of pta and Cry1A(a) gene in maize. Chinese Agricultural Science Bulletin, 2006, 22(10): 131-134.(in Chinese)
[16]   杨召军, 郎志宏, 张杰, 宋福平, 何康来, 黄大昉. 转Btcry1Ah/ cry1Ie双价基因抗虫玉米的研究. 中国农业科技导报, 2012, 14(4): 39-45.
Yang Z J, Lang Z H, Zhang J, Song F P, He K L, Huang D F. Studies on insect-resistant transgenic maize ( Zea mays L. ) harboring Bt cry1Ah and cry1Ie genes. China Agricultural Science and Technology, 2012, 14(4): 39-45.(in Chinese)
[17]   李永生. 抗真菌双T-DNA植物表达载体构建及农杆菌介导的玉米茎尖遗传转化[D]. 兰州: 甘肃农业大学, 2012.
Li Y S. Agrobacterium-mediated transformation of anti-fungal genes into maize shoot apical meristem using a double T-DNA plant expression vector [D]. Lanzhou: Gansu Agricultural University, 2012. (in Chinese)
[18]   赖锦盛, 董永彬, 宋伟彬, 赵海铭. 人工合成用于转基因抗虫植物的Bt杀虫基因: 中国, 200910082840.6. 2009-11-18.
Lai J S, Dong Y B, Song W B, Zhao H M. Artificial synthesized Bt insecticidal gene for transgenic anti-insect plants: China, 200910082840.6. 2009-11-18. (in Chinese)
[19]   刘柱. 可变盐单胞菌中草甘膦抗性EPSP合酶新基因克隆、大肠杆菌表达及其抗性机制的研究[D]. 成都: 四川大学, 2004.
Liu Z. Cloning a nove1 5-enolpyruvylshikimate-3-phosphate synthase gene conferring increased glyphosate tolerance from Halomonas variabilis and its expression in Escherichia coli and its glyphosate- tolerant mechanism [D]. Chengdu: Sichuan University, 2004. (in Chinese)
[20]   Castle L A, Siehl D L, Gorton R, Patten P A,  Chen Y H, Bertain S, Cho H J , Duck N, Wong J, Liu D L, Lassner M W. Discovery and directed evolution of a glyphosate tolerance gene. Science, 2004, 304(5674): 1151-1154.
[21]   Sui Z, Niu L, Yue G, Yang A, Zhang J. Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.). Gene, 2008, 426(1): 47-56.
[22]   Zhai S M, Gao Q, Xue H W, Sui Z H, Yue G D, Yang A F, Zhang J R. Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta, 2012, 235(1): 69-84.
[23]   何康来, 王振营. 玉米抗螟性鉴定方法与评价标准. 沈阳农业大学学报, 2000, 31(5): 439-443.
He K L, Wang Z Y. Methodologies and criterions for evaluating maize resistance to Asian maize borer. Journal of Shenyang Agricultural University, 2000, 31(5): 439-443. (in Chinese)
[24]   王延锋. 转Bt基因抗虫玉米田间试验与遗传稳定性分析[D]. 哈尔滨: 东北农业大学, 2010.
Wang Y F. Field trials and genetic stability analysis of insect-resistant transgenic Bt maize[D]. Harbin: Northeast Agricultural University, 2010. (in Chinese)
[25]   吕霞, 王慧, 曾兴, 杨小艳, 翁建峰, 邸宏, 郭燕博, 王振华, 李新海. 转基因抗虫玉米研究及应用. 作物杂志, 2013, 2: 004.
Lü X, Wang H, Zeng X, Yang X Y, Weng J F, Di H, Guo Y B, Wang Z H, Li X H. Research and application of transgenic Bt corn for insect resistance. Crops, 2013, 2: 004. (in Chinese)
[26] Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, Zhang J. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant, Cell & Environment, 2013, 36(5): 1037-1055.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[5] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[12] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[13] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[14] SHAO JingYi,LI XiaoFan,YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631.
[15] REN ZhiJie,LI Qian,SUN YuJia,KONG DongDong,LIU LiangYu,HOU CongCong,LI LeGong. OsCSC11 Mediates Dry-Hot Wind/Drought-Induced Ca2+ Signal to Regulate Stamen Development in Rice [J]. Scientia Agricultura Sinica, 2021, 54(10): 2039-2052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!