Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (1): 112-119.doi: 10.3864/j.issn.0578-1752.2015.01.11

• HORTICULTURE • Previous Articles     Next Articles

QTL Mapping for Parthenocarpy in Cucumber

WU Zhe1,2, LI Lei1, ZHANG Ting1, ZHANG Ting-lin1, LI Ji1, LOU Qun-feng1,CHEN Jin-feng1   

  1. 1College of Horticulture, Nanjing Agricultural University/State Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
    2College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2014-07-03 Online:2015-01-01 Published:2015-01-01

Abstract: 【Objective】Cucumber is one of the ten vegetables in the world and parhenocarpy is an important trait closely related to production and quality of cucumber. To explore the inheritance and QTL mapping for parthenocarpy in cucumber could provide a preliminary basis for further study on mechanism of parthenocarpy and molecular assistant selection breeding, and lay a theoretical foundation for breeding of parthenocarpy.【Method】In this study, The authers clipped eight female flowers on main stem and branches, respectively, for every individual plant and investigated parthenocarpic fruit once when all plants treament finished 8-10 days later to calculate the parthenocarpy percentage (numbers of parthenocarpis fruit/numbers of clipped female flower) in order to evaluate parthenocarpy ability. Two F2 progenies derived from two crosses between EC1, a gynoecious parthenocarpic line, and two monoecious non-parthenocarpic lines 8419 and 14519 were constructed to determine the inheritance of parthenocarpy in cucumber. A linkage map from part of F2 plants from the cross of EC1×8419 was constructed with JoinMap4.0 software by screening 1 335 SSR from 9930 and gy14 cucumber genome sequencing and 143 Indel primers from two parents resequencing and QTL detection for parthenocarpy was conducted with WinQTLcart2.5 software using F2:3 families from the same cross. The candidate genes in major QTL region were predicted using bioinformatic analysis method.【Result】Parthenocarpy in EC1 was inherited quantitatively but segregated towards different parents in two F2 progenies. A linkage map containing 7 chromosomes, 116 SSR and 9 Indel markers was constructed, which total length was 802.9 cM and average distance between two markers was 6.3 cM. QTL analysis identified 7 QTLs, Parth1, Parth2-1, Parth2-2, Parth3-1, Parth3-2, Parth5, and Parth7,distributing on chromosomes 1, 2, 3, 5, and 7. The major QTL Parth2-1 locating between SSR00684-SSR22083 was the only locus detected in two seasons, having two LOD scores of 9.0, 6.2 and R2 of 17.4%, 10.2%, respectively, and its genetic and physical distance was 17.1 cM and 2.9 Mb. There were 307 genes in this region and two gene among them, Csa2M035330.1 and Csa2M070880.1, involved in plant hormone signal transduction would be candidate genes closely related to parthenocarpy, the rest were minor QTLs.【Conclusion】The inheritance of pathenocarpy was quantitative. The QTL Parth2-1 locating on chromosome 2 was the major QTL controlling parthenocarpy in cucumber and two genes in plant hormone pathway would be candidate genes. The results in this study would lay a foundation for fine mapping and gene cloning of major QTL of parthenocarpy in cucumber and for use in MAS breeding.

Key words: cucumber, parthenocarpy, linkage map, QTL

[1]    陈学好, 曹碚生. 黄瓜单性结实研究概况. 中国蔬菜, 1994(3): 56-59.
Chen X H, Cao B S.Research on parthenocarpy in Cucumber. China Vegetables, 1994(3): 56-59.(in Chinese)
[2]    Hawthorn L R, Wellington R. Geneva, a greenhouse cucumber that develops fruit without pollination. New York Agricultural Experiment Station Bulletin, 1930, 580: 1-11.
[3]    Juldasheva L M. Inheritance of the tendency towards parthenocarpy in cucumbers. Byull. vsesoyuznogo ordena Lenina Inst. Rastenievodstva Imeni N.I. Vavilova, 1973, 32: 58-59.
[4]    Meshcherov E T, Juldasheva L M. Parthenocarpy in cucumber. Trudy-po-Prikladnoi-Botanike-Genetiki-I-Selektsii, 1974, 51: 204-213.
[5]    Pike L M, Peterson C E. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica, 1969, 18(1): 101-105.
[6]    Ponti O M B, Garretsen F. Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica, 1976, 25(1): 633-642.
[7]    El Shawaf I I S, Baker L R. Inheritance of parthenocarpic yield in gynoecious pickling cucumber for onec-over mechanical harvest by diallel analysis of six gynoecious lines. Journal of the American Society for Horticultural Science, 1981, 106(3): 359-364.
[8]    El Shawaf I I S, Baker L R. Combining ability and genetic variances of G×H F1 hybrids for parthenocarpic yield in gynoecious pickling cucumber from once-over mechanical harvest. Journal of the American Society for Horticultural Science, 1981, 106(3): 365-370.
[9]    曹碚生, 陈学好, 徐强, 顾春山. 黄瓜单性结实世代遗传效应的初步研究. 园艺学报, 1997, 24(1): 53-56.
Cao B S, Chen X H, Xu Q, Gu C S. The genetic effects of parthenocarpic generations of cucumber. Acta Horticulturae Sinica, 1997, 24(1): 53-56. (in Chinese)
[10]   Sun Z Y,Lower R L, Staub J E. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breeding, 2006, 125(3): 277-280.
[11]   闫立英, 娄丽娜, 娄群峰, 陈劲枫. 全雌黄瓜单性结实性的遗传分析. 园艺学报, 2008, 35(10): 1441-1446.
Yan L Y, Lou L N, Lou Q F, Chen J F. Inheritance of parthenocarpy in gynoecious cucumber (Cucumis sativus L.). Acta Horticulturae Sinica, 2008, 35(10): 1441-1446. (in Chinese)
[12]   闫立英, 娄丽娜, 李晓丽, 娄群峰, 冯志红, 陈劲枫. 雌雄同株黄瓜单性结实性遗传分析. 中国农业科学, 2010, 43(6): 1295-1301.
Yan L Y, Lou L N, Li X L, Lou Q F, Feng Z H, Chen J F. Inheritance of parthenocarpy in monoecious cucumber (Cucumis sativus L.). Scientia Agricultura Sinica, 2010, 43(6): 1295-1301. (in Chinese)
[13]   王莉莉, 司龙亭, 邹芳斌. 黄瓜单性结实的遗传分析. 湖北农业科学, 2008, 47(4): 437-439.
Wang L L, Si L T, Zou F B. Genetic analysis of parthenocarpy incucumber. Hubei Agricultural Sciences, 2008, 47(4): 437-439. (in Chinese)
[14]   Sun Z Y, Staub J, Chung S M, E Lower R L. Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breeding, 2006, 125(3): 281-287.
[15]   Cavagnaro P F, Senalik D A,Yang L M, Simon P W, Harkins T T, Kodira C D, Huang S W, Weng Y Q. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 2010, 11(1): 1471-2164.
[16]   Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y, Zhu H M, Li J, Lin K, Jin W W,Fei Z J, Li G C, Staub J B, Kilian A, van der Vossen E A G, Wu Y, GuoJ, He J, Jia Z Q, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M W,Huang Q F, Li B, Xuan Z L, Cao J J, San A, Wu Z G, Zhang J B, CaiQ L, Bai Y Q, Zhao B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X,Liu SQ, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H,Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Li M, Liang H Q,Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J, Yang Z T,Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X D, LiG Q, Fang L, Li Y G, Liu D Y, Zheng H K, Zhang Y, Qin N, Li Z,Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C,Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, WangJ, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L. Nature Genetics, 2009, 41(12): 1275-1281.
[17]   Zhang W W, Pan J S, He H L, Zhang C, Li Z, Zhao J L, Yuan X J, Zhu L H, Huang S W, Cai Run. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2012, 124(2): 249-259.
[18]   Li H, Hearne S, Banziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity, 2010, 105(3): 257-267.
[19]   李慧慧, 张鲁燕, 王健康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010, 36(6): 918-931.
[20]   Gustafson F G. Auxin distribution in fruits and its significance in fruit development. American Journal of Botany, 1939, 26(4): 189-194.
[21]   Beyer E M, Quebedeaux B. Parthenocarpy in cucumber: mechanism of action of auxin transport inhibitors. Journal of the American Society for Horticultural Science, 1974, 99: 385-390.
[22]   Mapelli S, Frova C, Torti G, Soressi G P. Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiology, 1978, 19(7): 1281-1288.
[23]   Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell, 1993, 5(10): 1439-1451.
[24]   Vivian-Smith A, Koltunow A M. Genetic analysis of growth regulator-induced parthenocarpy in arabidopsis. Plant Physiology, 1999, 121(2): 437-451.
[25]   Serrani J C, Fos M, Atarés A, García-Martínez J L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. Micro-Tom of tomato. Journal of Plant Growth Regulation, 2007, 26(3): 211-221.
[26]   Fu F Q, Mao W H , Shi K, Zhou Y H, Asami, Yu J Q. A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 2008, 59(9): 2299-2308.
[27]   De-Jong M, Mariani C, Vriezen W H. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 2009, 60(5): 1523-1532.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[9] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[12] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[13] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[14] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[15] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!