Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4234-4245.doi: 10.3864/j.issn.0578-1752.2014.21.009

• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles     Next Articles

Approaches of Establishment of Technological System of Transgenic Sheep

LIU Ming-jun1, ZHANG Xue-mei1,2, LI Wen-rong1,2, HUANG Jun-cheng1, WANG Li-qin1   

  1. 1Biotechnological Research Center, Xinjiang Academy of Animal Science/Key Laboratory of Animal Biotechnology of Xinjiang/ Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Urumqi 830000
    2College of Life Science and Technology, Xinjiang University, Urumqi 830046
  • Received:2014-04-02 Revised:2014-06-30 Online:2014-11-01 Published:2014-11-01

Abstract: Transgenic approach can break-through the barrier of breeds, integrate multiple gene effects and modify the genome based on the requirement of mankind, therefore it exhibits great potentials. Since the first transgenic animal born in 1982, more than ten species of transgenic animals have been reported. The methods to generate transgenic animals were developed from original pronuclear microinjection to nuclear transfer, viral vector transgenesis, and concurrent genome editing. The aims of the transgenic animal are also expanded from establishment of transgenic animal technique to generation of transgenic model, improvement of the productive performance or product quality, as bioreactor to produce high value pharmaceutical proteins, and breeding new animal breeds. Hereby the worldwide approaches, the faced problems, and the tendency to produce transgenic sheep were summarized. The proceedings of generation of transgenic novel breeds or animal models, and the characteristics of transgenic techniques were reviewed. The barrier and bottleneck of transgenic techniques were also addressed. Particularly, the feature, tendency and potential of the concurrently highlighted genome editing technique were comprehensively documented. Moreover, the necessity to establish a technological system of transgenic sheep was elucidated, and the present status, gain of innovation and breakthrough, highlighted target of transgenic sheep in domestic in future were reviewed. Meanwhile, the outlook of the economic, ecological and social effects resulted from transgenic sheep were further analyzed and previewed as well.

Key words: sheep, transgenic technology, large-scale

[1]    Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, FahrenkrugS C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the USA, 2012, 109(43): 17382-17387.
[2]    Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, ChenY E, Lai L. Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 2011, 21(6):979-982.
[3]    Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W, Lucas-Hahn A, Zhang L, Meng X, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of United States of America, 2011, 108(29):12013-12017.
[4]    Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11):2281-2308.
[5]    Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4):910-918.
[6]    Hammer R E, Pursel V G, Rexroad C E, Jr Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021):680-683.
[7]    Cui X, Ji D, Fisher D A, Wu Y, Briner D M, WeinsteinE J. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nature Biotechnology, 2011, 29(1):64-67.
[8]    Meyer M, de Angelis M H, Wurst W, Kuhn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34):15022-15026.
[9]    Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8):684-686.
[10]   Tesson L, Usal C, Menoret S, Leung E, Niles B J, Remy S, Santiago Y, Vincent A I, Meng X, Zhang L, Gregory P D, Anegon I, Cost G J. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29(8):695-696.
[11]   Jaenisch R. Infection of mouse blastocysts with SV40 DNA: normal development of the infected embryos and persistence of SV40-specific DNA sequences in the adult animals. Cold Spring Harb Symp Quant Biology, 1975, 39: 375-380.
[12]   Hettle S, Harvey M, Cameron E, Johnston C, Onions D. Generation of transgenic sheep by sub-zonal injection of feline leukaemia virus. Journal of Cellular Biochemistry, 1989, 13( Suppl. B):180.
[13]   余大为, 朱化彬, 杜卫华. 家畜转基因育种研究进展. 遗传, 2011, 33(5):459-468.
Yu D W, Zhu H B, Du W H. Advances of transgenic breeding in livestock. Hereditas, 2011, 33(5):459-468. (in Chinese)
[14]   黄永震, 贺花, 陈宏. 动物转基因技术研究新进展及其在牛育种上的应用. 中国牛业科学, 2011, 37(4):35-40.
Huang Y Z, He H, Chen H. Current status of transgenic animals and application in transgenic cattle breeding. China Cattle Science, 2011, 37(4): 35-40.(in Chinese)
[15]   Ritchie W A, King T, Neil C, Carlisle A J, Lillico S, McLachlan G, Whitelaw C B. Transgenic sheep designed for transplantation studies. Molecular Reproduction and Development, 2009, 76(1):61-64.
[16]   Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619):810-813.
[17]   Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278(5346):2130-2133.
[18]   张涌, 王建辰, 钱菊汾, 郝志明. 山羊卵核移植的研究. 中国农业科学, 1991, 24(5):1-6.
Zhang Y, Wang J C, Qian J F, Hao Z M. Nuclear transplantation  in goat enbryos. Scientia Agricultura Sinica, 1991, 24(5):1-6. (in Chinese)
[19]   安晓荣, 苟克勉, 陈永福. 体细胞克隆法生产绵羊转基因囊胚. 科学通报, 2001, 46(10):820-823.
An X R, Gou K M, Chen Y F.Production of sheep transgenic blastula derived from somatic cell nuclear transfer. Chinese Science Bulletin, 2001, 46(10):820-823. (in Chinese)
[20]   Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q. Targeting the exogenous htPAm gene on goat somatic cell beta-casein locus for transgenic goat production. Molecular Reproduction and Development, 2007, 74(4):428-434.
[21]   McCreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790):1066-1069.
[22]   Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie W A, Rollo M, de Sousa P, Travers A, Wilmut I, Clark A J. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6):559-562.
[23]   Golding M C, Long C R, Carmell M A, Hannon G J, Westhusin M E. Suppression of prion protein in livestock by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14):5285-5290.
[24]   Yu G, Chen J, Yu H, Liu S, Chen J, Xu X, Sha H, Zhang X, Wu G, Xu S, Cheng G. Functional disruption of the prion protein gene in cloned goats. Journal of General Virology, 2006, 87(Pt 4):1019-1027.
[25]   Reggio B C, James A N, Green H L, Gavin W G, Behboodi E, Echelard Y, Godke R A. Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir- derived ovaries. Biology of Reproduction, 2001, 65(5):1528-1533.
[26]   Kuhholzer B, Hawley R J, Lai L, Kolber-Simonds D, Prather R S. Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biology of Reproduction, 2001, 64(6):1695-1698.
[27]   Yang X, Kubota C, Suzuki H, Taneja M, Bols P E, Presicce G A. Control of oocyte maturation in cows-biological factors. Theriogenology, 1998, 49(2):471-482.
[28]   Shukla V K, Doyon Y, Miller J C, DeKelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X, Choi V M, Rock J M, Wu Y Y, Katibah G E, Zhifang G, McCaskill D, Simpson M A, Blakeslee B, Greenwalt S A, Butler H J, Hinkley S J, Zhang L, Rebar E J, Gregory P D, Urnov F D. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459(7245):437-441.
[29]   Beumer K J, Trautman J K, Bozas A, Liu J L, Rutter J, Gall J G, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19821-19826.
[30]   Foley J E, Yeh J R, Maeder M L, Reyon D, Sander J D, Peterson R T, Joung J K. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One, 2009, 4(2):e4348.
[31]   Carbery I D, Ji D, Harrington A, Brown V, Weinstein E J, Liaw L, Cui X. Targeted genome modification in mice using zinc-finger nucleases. Genetics, 2010, 186(2):451-459.
[32]   Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi V M, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis G D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jacob H J, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433.
[33]   Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemisry and Molecular Biology, 2010, 40(10):759-765.
[34]   Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11):1638-1640.
[35]   Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, Melliand K, Juillerat A, Duchateau P. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. Journal of Biological Chemistry, 2012, 287(46): 38427-38432.
[36]   沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶 (TALEN) 介导的基因组定点修饰技术遗传, 2013, 35(4):395-409.
Shen Y, Xiao A, Huang P, Wang W Y, Zhu Z Y, Zhang B. TALE nuclease engineering and targeted genome modification. Hereditas, 2013, 35(4):395-409. (in Chinese)
[37]   Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
[38]   Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.
[39]   Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121):823-826.
[40]   Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166):84-87.
[41]   Schwank G, Koo B K, Sasselli V, Dekkers J F, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent C K, Nieuwenhuis E E, Beekman J M, Clevers H. Functional repair of CFTR by CRISPR/ Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13(6):653-658.
[42]   Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6): 1370-1379.
[43]   Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4):393-394.
[44]   Nishimasu H, Ran F A, Hsu P D, Konermann S, Shehata S I, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5):935-949.
[45]   Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6):659-662.
[46]   Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 681-683.
[47]   Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan H Y, Du B, Liu B, Liu M, Li D. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Research, 2013, 41(11):e120.
[48]   Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4):836-843.
[49]   方锐, 畅飞, 孙照霖, 李宁, 孟庆勇. CRISPR/Cas9 介导的基因组定点编辑技术. 生物化学与生物物理进展, 2013, 40(8):691-702.
Fang R, Chang F, Sun Z L, Li N, Meng Q Y. New method of genome editing derived from CRISPR/Cas9. Progress in Biochemistry and Biophysics, 2013, 40(8):691-702. (in Chinese)
[50]   Pattanayak V, Lin S, Guilinger J P, Ma E, Doudna J A, Liu D R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9):839-843.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[9] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[10] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[11] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[12] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[13] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[14] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
[15] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!