Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4224-4233.doi: 10.3864/j.issn.0578-1752.2014.21.008

• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles     Next Articles

Establishment and Prospect of Efficient Transgenic System for Cattle

MENG Qing-yong, LIU Chun-cheng, WANG Meng, ZHANG Kuo, DAI Yun-ping, GUO Ying, FEI Jing, LI Ning   

  1. State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193
  • Received:2014-04-02 Revised:2014-08-25 Online:2014-11-01 Published:2014-11-01

Abstract: With the continuous development of life science and the expanding needs of industry application, transgenic technology, a basic technology of life science research, is expanding to life science industry application, which includes big domestic animal transgenic technology industrialization application. GM technology is discussed in this paper about the application and the development in transgenic cattle breeding, combining with the history of transgenic cattle in the world and the bovine transgenic breeding system construction in China. Through introduction, integration and innovation of the modern animal biotechnology, a safe, efficient and large-scale cattle transgenic technology system was established, which should improve the implement in the production of cattle and more extensive application in breeding practice. The purpose of transgenic technology for cattle breeding is improvement of the ability of disease resistance, the milk quality, the milk or meat output and the bioreactor of producing some functional proteins. At present, the scale GM technology system platform of cattle is nearly mature, which level has attained world class performance. More in-depth work will be focused on the regulation of functional gene and security control of import methods. In the future, the bovine transgenic breeding work should be led to “safe, efficient, large-scale”, which includes tissue specific promoters, optimizing codon, adjusting the genetic modification, point knock-in genes, marker free and so on. Disease-resistant and high-yielding dairy breeding is the essential direction of the development of the livestock industry. Some active functional proteins could be produced by cattle gland reactor, so establishment of a perfective efficient transgenic system for cattle is one of the prominent development direction in the future.

Key words: cattle, transgenic system, breeding, large-scale

[1]    Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77: 7380-7384.
[2]    Palmiter R D, Brinster R L, Hammer R E, Trumbauer M E, Rosenfeld M G, Birnberg N C, Evans R M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 1982, 300: 611-615.
[3]    Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385: 810-813.
[4]    Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R. Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y), 1991, 9: 844-847.
[5]    Chan A W, Chong K Y, Martinovich C, Simerly C, Schatten G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 2001, 291: 309-312.
[6]    Hammer R E, Pursel V G, Rexroad C E, Jr., Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315: 680-683.
[7]    Willadsen S M. Nuclear transplantation in sheep embryos. Nature, 1986, 320: 63-65.
[8]    McCreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405: 1066-1069.
[9]    Denning C, Dickinson P, Burl S, Wylie D, Fletcher J, Clark A J. Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells, 2001, 3: 221-231.
[10]   Xia S, Lu Y, Wang J, He C, Hong S, Serhan C N, Kang J X. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 12499-12504.
[11]   Scharfen E C, Mills D A, Maga E A. Use of human lysozyme transgenic goat milk in cheese making: effects on lactic acid bacteria performance. Journal of Dairy Science, 2007, 90: 4084-4091.
[12]   Richt J A, Kasinathan P, Hamir A N, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl J M, Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25: 132-138.
[13]   Donovan D M, Kerr D E, Wall R J. Engineering disease resistant cattle. Transgenic Research, 2005, 14: 563-567.
[14]   Wall R J, Powell A M, Paape M J, Kerr D E, Bannerman D D, Pursel V G, Wells K D, Talbot N, Hawk H W. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 2005, 23: 445-451.
[15]   Kuroiwa Y, Kasinathan P, Choi Y J, Naeem R, Tomizuka K, Sullivan E J, Knott J G, Duteau A, Goldsby R A, Osborne B A, Ishida I, Robl J M. Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology, 2002, 20: 889-894.
[16]   Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao J A, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl J M. Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nature Biotechnology, 2009, 27: 173-181.
[17]   Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278: 2130-2133.
[18]   龚国春. 利用体细胞核移植技术生产转基因牛[D]. 北京:中国农业大学, 2005.
Gong G C. Production of transgenic calves by somatic cell nuclear transfer[D]. Beijing: China Agricultural University, 2005. (in Chinese)
[19]   王少华. 利用无启动子打靶载体研制朊蛋白基因敲除奶[D]. 北京:中国农业大学, 2009.
Wang S H. Prion gene knockout with promoter-less strategy in cattle[D]. Beijing: China Agricultural University, 2009. (in Chinese)
[20]   马晶晶, 王勇胜, 何小宁, 郑月茂, 张涌. 牛胎儿成纤维细胞β-防御素(hBD3)基因转染及转基因克隆胚制备. 农业生物技术学报. 2010, 4:707-712. 
Ma J J, Wang Y S, He X N, Zheng Y M, Zhang Y. Transfection of bovine fetal fibroblasts with β-defensin (hBD3) gene and construction of transgenetic cloned embryos. Journal of Agricultural Biotechnology, 2010, 4:707-712. (in Chinese)
[21]   汤波. 利用奶牛乳腺生物反应器生产重组抗CD20单克隆抗体. 北京:中国农业大学[D], 2009.
Tang B. Production of recombinant anti-CD-20 chimeric monoclonal antibodies by cattle mammary gland bioreactor. Beijing: China Agricultural University[D], 2009. (in Chinese)
[22]   Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77: 7380-7384.
[23]   Haskell R E, Bowen R A. Efficient production of transgenic cattle by retroviral infection of early embryos. Molecular Reproduction and Development, 1995, 40: 386-390.
[24]   Lavitrano M, Camaioni A, Fazio V M, Dolci S, Farace M G, Spadafora C. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell, 1989, 57: 717-723.
[25]   Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154-156.
[26]   Piedrahita J A, Mir B. Cloning and transgenesis in mammals: implications for xenotransplantation. American Journal of Transplantation, 2004, 4( Suppl 6): 43-50.
[27]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663-676.
[28]   Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1: 46-54.
[29]   Han X, Han J, Ding F, Cao S, Lim S S, Dai Y, Zhang R, Zhang Y, Lim B, Li N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21: 1509-1512.
[30]   Sartori C, DiDomenico A I, Thomson A J, Milne E, Lillico S G, Burdon T G, Whitelaw C B. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram, 2012, 14: 8-19.
[31]   杨晓, 黄培堂, 黄翠芬. 基因打靶技术. 北京: 科学出版社, 2003: 18.
Yang X, Huang P T, Huang C F. Gene Targeting. Beijing: Science Press, 2003:18. (in Chinese)
[32]   Waldman A S. Targeted homologous recombination in mammalian cells. Critical Reviews in Oncology/Hematology, 1992, 12: 49-64.
[33]   Sedivy J M, Sharp P A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 227-231.
[34]   Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce de Leon F A, Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280: 1256-1258.
[35]   Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282: 2095-2098.
[36]   Wells D N, Misica P M, Tervit H R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biology of Reproduction, 1999, 60: 996-1005.
[37]   Shiga K, Fujita T, Hirose K, Sasae Y, Nagai T. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls. Theriogenology, 1999, 52: 527-535.
[38]   Ogura A, Inoue K, Ogonuki N, Noguchi A, Takano K, Nagano R, Suzuki O, Lee J, Ishino F, Matsuda J. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biology of Reproduction, 2000, 62: 1579-1584.
[39]   Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce de Leon F A, Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280: 1256-1258.
[40]   Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W, Prelle K, Steinborn R, Muller M, Brem G, Wolf E. Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. Journal of Reproduction and Fertility, 1999, 115: 325-331.
[41]   Lai L, Park K W, Cheong H T, Kuhholzer B, Samuel M, Bonk A, Im G S, Rieke A, Day B N, Murphy C N, Carter D B, Prather R S. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Molecular Reproduction and Developmen, 2002, 62: 300-306.
[42]   Reggio B C, James A N, Green H L, Gavin W G, Behboodi E, Echelard Y, Godke R A. Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir- derived ovaries. Biology of Reproduction, 2001, 65: 1528-1533.
[43]   Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 1156-1160.
[44]   Miller J C, Holmes M C, Wang J, Guschin D Y, Lee Y L, Rupniewski I, Beausejour C M, Waite A J, Wang N S, Kim K A, Gregory P D, Pabo C O, Rebar E J. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25: 778-785.
[45]   Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326: 1501.
[46]   Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326: 1509-1512.
[47]   Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual Review of Phytopathology, 2010, 48: 419-436.
[48]   Li T, Huang S, Zhao X, Wright D A, Carpenter S, Spalding M H, Weeks D P, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, 39: 6315-6325.
[49]   Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Review Molecular Cell Biology, 2013, 14: 49-55.
[50]   Mussolino C, Cathomen T. RNA guides genome engineering. Nature Biotechnology, 2013, 31: 208-209.
[51]   Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/ RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156: 836-843.
[52]   Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24: 372-375.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[3] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[4] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[5] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[6] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[7] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[8] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[9] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[10] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[14] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[15] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!