Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4141-4154.doi: 10.3864/j.issn.0578-1752.2014.21.002
• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles Next Articles
ZHANG Xin1, FU Ya-ping2, ZHOU Jun-li3, GUO Xiu-ping1, LIU Wen-zhen2, WU Jie-fang3, WU Chuan-yin1, WAN Jian-min1
[1] 陈浩, 林拥军, 张启发. 转基因水稻研究的回顾与展望. 科学通报, 2009, 54: 2699-2717.
Chen H, Lin Y J, Zhang Q F. Review and prospect of transgenic rice research. Chinese Science Bulletin, 2009, 54: 2699-2717. (in Chinese)
[2] Charles H J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty F, Robinson S, Thomas S M, Toulmin C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
[3] Qing J I, Xu X, Wang K. Genetic transformation of major cereal crops. The International Journal Developmental Biology,2013, 57: 495-508.
[4] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6: 271-282.
[5] Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 7783-7788.
[6] 谢道昕, 范云六, 倪裴冲. 苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因水稻植株的研究. 中国科学B辑: 化学, 1991, 8: 830-834.
Xie D X, Fan Y L, Ni P C. Transgeic rice plant of a superior Chinese cultivar Zhonghua No.11 containing the B. t. δ-endotoxin gene in its genome. Science in China, Ser B: Chemistry, 1991, 8: 830-834. (in Chinese)
[7] 何迎春, 高必达. 含烟草几丁质酶基因的质粒PBG1121的构建及水稻转化. 湖南农业大学学报: 自然科学版, 2002, 28(2): 93-96.
He Y C, Gao B D. Construction of a new plant transformation plasmid pBG1121 containing a tobacco chitinase gene and rice transformation. Journal of Hunan Agricultural Universitly: Natural Science, 2002, 28(2): 93-96. (in Chinese)
[8] 赵凌, 王才林, 宗寿余, 黄骏麒, 龚蓁蓁. 花粉管介导的转bar基因水稻植株的获得及其遗传. 中国生物工程杂志, 2003(8): 92-95.
Zhao L, Wang C L, Zong S Y, Huang J Q, Gong Z Z. Herbicide resistant transgenic rice (Oryza sativa L.) transformed by pollen-tube pathway method and its Inheritance. China Biotechnology, 2003(8): 92-95. (in Chinese)
[9] 肖君泽, 邓建平. 花粉管通道转基因技术及在水稻分子育种的应用. 中国农学通报, 2006, 22(2) : 87-90.
Xiao J Z, Deng J P. Pollen tube pathway transgenic technique and application in rice moleculer breeding. Chinese Agricultural Science Bulletin,2006, 22(2): 87-90. (in Chinese)
[10] 孙希平, 柳哲胜, 李树华, 杨庆文, 张万霞. 普通野生稻(Oryza rufipogon)DNA导入栽培稻后代主要性状的遗传变异. 植物遗传资源学报, 2009, 10(2): 267-271.
Sun X P, Liu Z S, Li S H, Yang Q W, Zhang W X. Genetic variation of pollen-tube transferred lines of cultivated rice with Oryza rufipogon DNA. Journal of Plant Genetic Resources,2009, 10(2): 267-271. (in Chinese)
[11] Shimamoto K, Terada R, Izawa T, Fujimoto H. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature,1988, 338: 274-276.
[12] Xu X, Li B J. Fertile transgenic indica rice plant obtained by electroporation of the seed embryo cells. Plant Cell Reports,1994, 13: 237-242.
[13] 王胜华, 赵洁, 杨弘远. 水稻幼胚电激转化及转基因植株再生. 植物学报, 2002, 44(7): 827-831.
Wang S H, Zhao J, Yang H Y. Gene transfer into young embryos via electroporation and regeneration of plantlets in rice. Acta Botanica Sinica,2002, 44(7): 827-831. (in Chinese)
[14] 杨虹, 李家新, 郭三堆, 陈学军, 范云六. 苏云金芽孢杆菌δ-内毒素基因导入原生质体后获得转基因植株. 中国农业科学, 1989, 22(6): 1-5.
Yang H, Li J X, Guo S D, Chen X J, Fan Y L. Transgenic rice plants produced by direct uptake of δ-endotoxin protein gene from Bacillus thuringenesis into rice protoplasts. Scientia AgriculturaSinica, 1989, 22(6): 1-5. (in Chinese)
[15] Hayashimoto A, Li Z, Murai N. A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiology, 1990, 93: 857-863.
[16] Datta S K, Peterhans A, Datta K, Potrykus I. Genetically engineered fertile indica rice recovered from protoplasts. Biotechnology, 1990, 8: 736-740.
[17] 李文彬, 王革娇, Stanchina E, Castiglione S, 孙勇如, Sala F. PEG介导原生质体转化获水稻转基因植株. 植物学报, 1995, 37(5): 409-412.
Li W B, Wang G J, Stanchina E, Castiglione S, Sun Y R, Sala F. Transgenic rice plants produced by PEG-mediated plasmid uptake into protoplasts. Acta Batanica Sinica,1995, 37(5): 409-412. (in Chinese)
[18] Uehimiya H, Fushimi T, Hashimoto H, Harada H, Syno K, Sugawara Y. Expression of a foreign gene in callus derived from NDA-treated protoplasts of rice. Molecular and General Genetics, 1996, 204: 204-207.
[19] Christou P, Ford T L, Kofron M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology, 1991, 9: 957-962.
[20] Tang K, Wu A, Yao J, Qi H, Lu X. Development of transgenic rice pure lines by particle bombardment mediated transformation and genetic analysis based selection. Acta Biotechnology,2000, 20: 175-183.
[21] 韩冰, 朱祯, 李慧芬, 吴茜, 周兆澜, 徐鸿林, 徐军望, 安利佳, 李向辉. 基因枪法转化水稻获得可育的转抗虫基因水稻再生株. 高技术通讯, 2001, 2: 12-16.
Han B, Zhu Z, Li H F, Wu Q, Zhou Z L, Xu H L, Xu J W, An L J, Li X H. Obtaining fertile transgenic plants of resistant-insect rice (Oryza sativa L.) via particle bombardment. High Technology Letters,2001, 2: 12-16. (in Chinese)
[22] 吴家道, 杨剑波, 许传万, 李莉, 向太和, 倪大虎, 汪秀峰, 贾士荣, 唐益雄, 张世平, Claude M F. 水稻抗白叶枯病基因Xa21转基因水稻及其杂交稻研究. 作物学报, 2001, 27: 29-34.
Wu J D, Yang J B, Xu C W, Li L, Xiang T H, Ni D H, Wang X F, Jia S R, Tang Y X, Zhang S P, Claude M F. Study on resistance gene to bacterial blight Xa21 transgenic rice and their hybrid combinations. Acta Agronomica Sinica, 2001, 27: 29-34. (in Chinese)
[23] Rahman Z A, Seman Z A, Roowi S, Basirun N, Subramaniam S. Production of transgenic indica rice (Oryza sativa L.) cv. MR 81 via particle bombardment system. Emirates Journal of Food Agriculture, 2010, 22: 353-366.
[24] Chan M T, Chang H H, Ho S L, Tong W F, Yu S M. Agrobacterium- mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/p-gluxcuronidase gene. Plant Molecular Biology,1993, 22: 491-506.
[25] Saika H, Nonaka S, Osakabe K, Toki S. Sequential monitoring of transgene expression following Agrobacterium-mediated transformation of rice. Plant Cell Physiology, 2012, 53: 1974-1983.
[26] Toriyama K, Arimoto Y, Uchmiya H, Hinata K. Transgenic rice plants after direct gene transfer into protoplast. Nature Biotechnology, 1988, 6: 1072-1074.
[27] Zhang H M, Yang H, Rech E L. Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Report, 1988, 7: 379-384.
[28] Zhang W, Wu R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theoretical and Appllied Genetics,1988, 76: 835-840.
[29] Aldemita R R, Hodges T K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta,1996, 199: 612-611.
[30] Rashid H A, Yokoi S A, Toriyama K A, Hinata K A. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports, 1996, 15: 727-730.
[31] 黄健秋, 卫志明, 安海龙, 徐淑平, 章冰. 根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生. 植物学报, 2000, 42(11): 1172-1178.
Huang J Q, Wei Z M, An H L, Xu S P, Zhang B. High efficiency of genetic transformation of rice using Agrobacterium mediated procedure. Acta Botanica Sinica, 2000, 42(11): 1172-1178. (in Chinese)
[32] Dong J J, Teng W M, Buchholz W G, Hall T C. Agrobacterium- mediated transformation of javanica rice. Molecular Breeding,1996, 2: 267-276.
[33] Toki S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molecular Biology Reporter, 1997,15: 16-21.
[34] Mohanty A, Sarma N P, Tyagi A K. Agrobacterium-meditated high frequency transformation of an elite indica rice variety Pusa Basmati1 and transmission of the transgenes to R2 progeny. Plant Science, 1999, 147: 127-137.
[35] Jiang J D, Linseombe S D, Wang J L, Oard J H. High efficiency transformation of US rice lines from mature seed-derived calli and segregation of glufosinate resistance under field condition. Crop Science, 2000, 40: 1729-1741.
[36] Pons M J, Marfa V, Mele E, Messeguer J. Regeneration and genetic transformation of Spanish rice cultivars using mature embryos. Euphytica, 2000, 114: 117-122.
[37] Upadhyaya N M, Surin B, Ramm K, Gaudron J, Schünmann P H, Taylor W, Waterhouse P M, Wang M B. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Australian Journal of Plant Physiology,2000, 27, 201-210.
[38] Lee K, Hyesung J, Minkyun K. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell, Tissue and Organ Culture, 2002, 71: 237-244.
[39] Kumar K K, Maruthasalam S, Loganathan M, Sudhakar D, Balasubramanian P. An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Molecular Biology Reporter, 2005, 23: 67-73.
[40] Aananthi N, Anandakumar C R, Ushakumari R, Shanthi P. Regeneration study of some indica rice cultivars followed by Agrobacterium-mediated transformation of highly regenerable cultivar, Pusa basmati. Electronic Journal of Plant Breeding, 2010, 1: 1249-1256.
[41] Sahoo K K, Tripathi A K, Pareek A, Sopory S K, Singla-Pareek S L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 2011, 7: 49.
[42] Saika H, Nonaka S, Osakabe K, Toki S. Sequential monitoring of transgene expression following Agrobacterium-mediated transformation of rice. Plant Cell Physiology, 2012, 53: 1974-1983.
[43] Rachmawati D, Hosaka T, Inoue E, Anza H. Agrobacterium-mediated transformation of javanica rice cv. Rojolele. Bioscience, Biotechnology Biochemistry2004, 68: 1193-1200.
[44] Terada R, Asao H, Iida S. A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Reports,2004, 22: 653-659.
[45] Lin Y J, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports, 2005, 23: 540-547.
[46] Ge X, Chu Z, Lin Y, Wang S. A tissue culture system for different germplasms of indica rice. Plant Cell Reports, 2006, 25(5): 392-402.
[47] Hiei Y, Komari T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 2006, 85: 271-283.
[48] Hiei Y, Komari T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 2008, 3: 824-834.
[49] Ozawa K. Establishment of a high efficiency Agrobacterium -mediated transformation system of rice (Oryza sativa L.). Plant Science, 2009, 176: 522-527.
[50] Ozawa K, Takaiwa F. Highly efficient Agrobacterium-mediated transformation of suspension-cultured cell clusters of rice (Oryza sativa L.). Plant Science. 2010, 179: 333-337.
[51] Ozawa K. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Transgenic PlantsMethods in Molecular Biology, 2012, 847: 51-57.
[52] Hiroaki S, Seiichi T. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Report,2010, 29: 1351-1364.
[53] Hamilton C M, Frary A, Lewis C. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 9975-9979.
[54] Liu Y G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutant with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 6535-6540.
[55] 周玲艳, 姜大刚, 吴豪, 庄楚雄, 刘耀光, 梅曼彤. 基于TAC 载体的水稻转化系统的建立. 遗传学报, 2005, 32: 514-518.
Zhou L Y, Jiang D G, Wu H, Zhuang C X, Liu Y G, Mei M T. Development of transformation system of rice based on transformation-competent artificial chromosome (TAC) vetor. Acta Gentica Sinica, 2005, 32: 514-518. (in Chinese)
[56] 何瑞锋, 王媛媛, 杜波, 唐明, 游艾青, 祝莉莉, 何光存. 水稻双元细菌人工染色体载体系统转化体系的建立. 遗传学报, 2006, 33: 269-276.
He R F, Wang Y Y, Du B, Tang M, You A Q, Zhu L L, He G C. Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Gentica Sinica, 2006, 33: 269-276. (in Chinese)
[57] Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006, 47: 969-976.
[58] 万建民. 我国转基因植物研发形势及发展战略. 生命科学, 2011, 23(2): 157-167.
Wan J M. Research and development status and future strategy of transgenic plants in China. Chinese Bulletin of Life Sciences,2011, 23(2): 157-167. (in Chinese)
[59] 黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民. 中国作物分子育种现状与发展前景. 作物学报, 2010, 36: 1425-1430.
Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China: Current status and perspectives. Acta Agronomica Sinica,2010, 36: 1425-1430. (in Chinese)
[60] 章冰, 卫志明. 根癌农杆菌介导的水稻转化及转基因R1植株表型特征. 植物生理学报, 1999, 25: 313-320.
Zhang B, Wei Z M. Agrobacterium-mediated transformation of rice and the phenotypic characteristics of the transgenic R1 plants. Acta Physiology Sinica,1999, 25: 313-320. (in Chinese)
[61] 陈惠, 赵原, 种康. 一种改进的水稻成熟胚愈伤组织高效基因转化系统. 植物学通报, 2008, 25(3): 322-331.
Chen H, Zhao Y, Zhong K. Improved high-efficiency system for rice transformation using mature embryo-derived calli. Chinese Bulletin of Botany, 2008, 25: 322-331. (in Chinese)
[62] 苏益, 黄善金, 蔺万煌, 萧浪涛. 根癌农杆菌介导的水稻快速转化方法研究. 中国农学通报, 2008, 24(5): 83-85.
Su Y, Huang S J, Lin W H, Xiao L T. Study of rice high-speed transformation by Agrobacterium infecting. Chinese Agricultural Science Bulletin, 2008, 24(5): 83-85. (in Chinese)
[63] 李笑寒, 李莉, 宋风顺, 倪大虎, 陆徐忠, 李浩, 段永波, 汪秀峰, 杨剑波. 根癌农杆菌介导的水稻转基因技术体系的优化. 生物学杂志, 2011, 28(2): 13-16.
Li X H, Li L, Song F S, Ni D H, Lu X Z, Li H, Duan Y B, Wang X F, Yang J B. Condition optimization of Agrobacterium-mediated transgenic rice. Journal of Biology, 2011, 28(2): 13-16. (in Chinese)
[64] 唐甜甜, 李浩, 段永波, 李莉, 陆徐忠, 梁永亚, 杨剑波. 利用GFP报告基因优化农杆菌介导的水稻遗传转化. 生物学杂志, 2012, 29(1): 88-91.
Tang T T, Li H, Duan Y B, Li L, Lu Y Z, Liang Y Y, Yang J B. Improvement of Agrobacterium-mediated genetic transformation of rice using GFP as a reporter gene. Journal of Biology, 2012, 29(1): 88-91. (in Chinese)
[65] 张丽, 王敬东, 陈晓军, 宋玉霞. 宁夏水稻高效再生体系的建立. 西北农林科技大学学报: 自然科学版, 2010, 38(9): 47-52.
Zhang L, Wang J D, Chen X J, Song Y X. Efficient regeneration system from in vitro of rice in Ningxia. Journal of Northwest A&F University: Natural Science Edition., 2010, 38(9): 47-52. (in Chinese)
[66] 阎丽娜, 李霞, 吴丹. 不同类型水稻材料成熟胚组织培养力的比较. 中国农业科学, 2010, 43(6): 1127-1135.
Yan L N, Li X, Wu D. The comparison in tissue culture ability from mature embryo in different rice cultivars. Scientia Agricultura Sinica,2010, 43(6): 1127-1135. (in Chinese)
[67] 王敬东, 马洪爱, 马洪文, 宋玉霞, 陈晓军. 宁夏优质水稻品种D10高效再生体系的建立. 中国农学通报, 2013, 29(33): 37-42.
Wang J D, Ma H A, Ma H W, Song Y X, Chen X J. The establishment of high efficient regeneration system in ningxia rice D10. Chinese Agricultural Science Bulletin, 2013, 29(33): 37-42. (in Chinese)
[68] 宁约瑟, 刘雄伦, 戴良英, 王国梁. 根癌农杆菌介导水稻遗传转化研究进展及展望, 中国农学通报, 2007, 23(3): 47-52.
Ning Y S, Liu X L, Dai L Y, Wang G L, Advances and perspectives of Agrobacterium tumefaciens-mediated transformation in rice. Chinese Agricultural Science Bulletin, 2007, 23(3): 47-52. (in Chinese)
[69] 韩光明, 李三和, 陈志军, 向发云, 游艾青, 陈温福. 根癌农杆菌介导的高效水稻遗传转化影响因素. 华北农学报, 2012, 27(增刊): 46-50.
Han G M, Li S H, Chen Z J, Xiang F Y, You A Q, Chen W F. Influencing factors of high efficiency Agrobacterium tumefaciens- mediated rice genetic transformation. Acta Agriculturae Boreall-Sinica, 2012, 27(Suppl.): 46-50. (in Chinese)
[70] 王慧中, 赵培洁, 颜美仙, 黄大年. 籼稻组织培养高频率植株再生. 自然杂志, 2000, 22(4): 247-248.
Wang H Z, Zhao P J, Yan M X, Huang D N. High frequency of plant regeneraton from indica rice immature embryo. Chinese Journal of Nature, 2000, 22(4): 247-248. (in Chinese)
[71] 易自力, 曹守云, 王力, 储成才, 李祥, 何锶洁, 唐祚舜, 周朴华, 田文忠. 提高农杆菌转化水稻频率的研究. 遗传学报, 2001, 28(4): 352-358.
Yi Z L, Cao S Y, Wang L, Chu C C, Li X, He S J, Tang Z S, Zhou P H, Tian W Z. Improvement of transformation frequency of rice mediated by Agrobacterium. Acta Genetica Sinica, 2001, 28(4): 352-358. (in Chinese)
[72] 刘元风, 刘颜卓, 王金花, 罗文永, 毛兴学, 李玲, 李晓芳. 根癌农杆菌介导籼稻遗传转化影响因素研究.分子植物育种, 2005, 3(5): 737-743.
Liu Y F, Liu Y Z, Wang J H, Luo W Y, Mao X X, Li L, Li X F. Study on factors related to Agrobacterium-mediated transformation of indica rice. Molecular Plant Breeding, 2005, 3(5): 737-743. (in Chinese)
[73] 高三基, 陈如凯, 马宏敏. 影响籼稻成熟胚愈伤组织植株再生频率的几个因素. 作物学报, 2004, 30(12): 1254-1258.
Gao S J, Chen R K, Ma H M. Factors influencing the regeneration frequency of mature embryo-derived callus in Hsien rice cultivars (Oryza sativa L.). Acta Agronomica Sinica, 2004, 30(12): 1254-1258. (in Chinese)
[74] 张平, 左示敏, 李爱宏, 张亚芳, 陈宗祥, 潘学彪. 提高农杆菌转化水稻频率几个因素的研究. 中国水稻科学, 2004, 18(1): 11-15.
Zhang P, Zuo S M, Li A H , Zhang Y F, Chen Z X, Pan X B. Factors affecting rice transformation frequency mediated by Agrobacterium. Chinese Journal of Rice Science, 2004, 18(1): 11-15. (in Chinese)
[75] 周凤, 于卉, 葛占宇, 周芝辉, 邓燕燕, 付永彩. 微量元素浓度对3个籼稻品种愈伤组织褐化和分化的影响. 农业生物技术学报, 2010, 18(4): 702-706.
Zhou F, Yu H, Ge Z Y, Zhou Z H, Deng Y Y, Fu Y C. Effects of microelement concentrations on callus browning and seedlings differentiation of three indica rice cultivars. Journal of Agricultural Biotechnology, 2010, 18(4): 702-706. (in Chinese)
[76] 李海林, 殷江南. 继代时期添加铜对籼稻成熟胚组织培养的影响, 生物技术通报, 2008(1): 140-142.
Li H L, Yin J N. Study on the effects of mature embryo tissue culture of indica rice in subculture period with the addition of copper. Biotechnology Bulletin, 2008(1): 140-142. (in Chinese)
[77] 黄赛麟, 李东宣, 甘树仙, 朱建荣, 李娟, 梁晶, 陈丽娟. 水稻成熟胚培养高效再生系统的创新. 分子植物育种, 2008, 6(4): 801-806.
Huang S L, Li D X, Gan S X, Zhu J R, Li J, Liang J, Chen L J. Innovation of high effective regeneration system for matured embryo in vitro culture of rice. Molecular Plant Breeding, 2008, 6(4): 801-806. ( in Chinese)
[78] 李阳, 李艳凤, 李阳生. 农杆菌介导的籼稻高效遗传转化技术研究//全国植物分子育种研讨会摘要集. 2009.
Li Y, Li Y F, Li Y S. The technology of agrobacterium-mediated high-efficiency transformation in indica rice//Abstract Collections of National Symposium for Plant Molecular Breeding, 2009. (in Chinese)
[79] Wang X, Li Y, Fang G, Zhao Q, Zeng Q, Li X, Gong H, Li Y. Nitrite promotes the growth and decreases the lignin content of indica rice calli: A comprehensive transcriptome analysis of nitrite-responsive genes during in vitro culture of rice. PLoS One, 2014, 9(4): e95105.
[80] 贾丽娥, 张欣, 吴传银, 万建民. 农杆菌介导籼稻遗传转化研究的进展及策略. 中国农业科技导报, 2011, 13(4): 39-45.
Jia L E, Zhang X, Wu C Y, Wan J M. Research progress and strategy for Agrobacterium-mediated genetic transformation in indica rice. Journal of Agricultural Science and Technology, 2011, 13(4): 39-45. (in Chinese)
[81] 于恒秀, 陆美芳, 陈秀花, 龚志云, 刘巧泉, 顾铭洪. 不同转化方法培育无抗性选择标记转基因水稻效率的比较. 中国水稻科学, 2009, 23(2): 120-126.
Yu H X, Lu M F, Chen X H, Gong Z Y, Liu Q Q, Gu M H. Comparison on efficiency of generating selectable marker-free transgenic rice by different transformation methods. Chinese Journal of Rice Science, 2009, 23(2): 120-126. (in Chinese)
[82] 陆美芳, 刘巧泉, 于恒秀, 顾铭洪. 农杆菌介导的水稻双载体共转化法中部分影响因素的研究. 生物技术通报, 2005(5): 55-62.
Lu M F, Liu Q Q, Yu H X, Gu M H. A study on several factors influencing co-transformation of rice with two Agrobacterium binary vectors. Biotechnology Bulletin, 2005(5): 55-62. (in Chinese)
[83] 陈扬勋, 张治国, 路铁刚. 无筛选标记转基因作物的研究进展. 生物技术通报, 2012(12): 1-7.
Chen Y X, Zhang Z G, Lu T G. Review of marker-free transgenic crop. Biotechnology Bulletin, 2012(12): 1-7. (in Chinese)
[84] Joersbo M, Okkels F T. A novel principle for selection of transgenic plant cells: Positive selection. Plant Cell Reports, 1996, 16: 219-221.
[85] He Z Q, Fu Y P, Si H M. Hu G C, Zhang S H, Yu Y H, Sun Z X. Phosphomannose-isomerase ( pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science,2004, 166: 17-22.
[86] Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W, Yang J. An efficient and high-throughput protocol for Agrobacterium mediated transformation based on phosphomannose isomerase positive selection in japonica rice (Oryza sativa L.) Plant Cell Reports, 2012, 31: 1611-1624.
[87] Lucca P, Ye X D, Potrykus I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Molecular Breeding, 2001, 7: 43-49.
[88] Zhu Z, Wu R. Regeneration of transgenieriee plants using high salt for selection, without the need for antibioties or herbieides. Plant Science, 2008,174: 519-542.
[89] 朱祯. 转基因水稻研发进展. 中国农业科技导报, 2010, 12(2): 9-16.
Zhu Z. Progress in research and development of transgenic rice. Journal of Agricultural Science and Technology,2010, 12(2): 9-16. (in Chinese)
[90] 李黎红, 叶卫军, 郭龙彪. 我国转基因水稻研究进展和商业化前景分析. 中国稻米, 2012, 18(6): 1-4.
Li Y H, Ye W J, Guo L B. Research on transgenic rice and its commercialization prospects in China. China Rice,2012, 18(6): 1-4. (in Chinese)
[91] 付亚萍, 刘文真, 胡国成, 斯华敏, 孙宗修. 关于水稻转基因应用于育种研究的思考. 中国农业科学, 2007, 40: 2659-2666.
Fu Y P, Liu W Z, Hu G C, Si H M, Sun Z X. Discussion on application of gene modification in rice breeding. Scientia Agricultura Sinica, 2007, 40: 2659-2666. (in Chinese)
[92] Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal,1996, 10: 165-174.
[93] Lee S M, Kang K, Chung H. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecular Cells, 2006, 21: 401-410.
[94] 苏宁, 孙萌, 杨波, 孟昆, 刘春英, 倪丕冲, 沈桂芳. 双价抗虫基因叶绿体共转化植株抗虫性及其后代表现型分析. 遗传, 2002, 24(3): 288-292.
Su N, Sun M, Yang B, Meng K, Liu C Y, Ni P C, Shen G F. The insect resistance of OC and Bt transgenic plant and the phenotype of their progenies. Hereditas,2002, 24(3): 288-292. (in Chinese)
[95] 李轶女, 孙丙耀, 苏宁, 孟祥勋,张志芳,沈桂芳. 水稻叶绿体表达体系的建立及抗PPT叶绿体转化植株的获得. 中国农业科学, 2007, 40: 1849-1855.
Li Y N, Sun B Y, Su N, Meng X X, Zhang Z F, Shen G F. Establishment of a gene expression system in rice chloroplast and obtainment of PPT-resistant rice plants. Scientia Agricultura Sinica, 2007, 40: 1849-1855. (in Chinese)
[96] 钱雪艳, 杨向东, 郭东全, 赵桂兰, 王丕武. 植物叶绿体遗传转化及研究进展. 分子植物育种, 2008, 6: 959-966.
Qian X Y, Yang X D, Guo D Q, Zhao G L, Wang P W. Advances in the research of plant chloroplast genetic transformation. Molecular Plant Breeding, 2008, 6: 959-966. (in Chinese)
[97] Darbani B, Eimanifar A, Jr Stewart C N, Camargo W N. Methods to produce marker-free transgenic plants. Biotechnology Journal,2007, 2: 83-90.
[98] Lutz K A, Maliga P. Construction of marker-free transplastomic plants. Current Opinion in Biotechnology,2007, 18: 107-114.
[99] Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus L. Engineering the pro-Vitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303-305.
[100] Daniell H, Dhingra A. Multigene engineering: Dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology, 2002, 13: 136-141.
[101] Surekha, Katiyar A, Avnish K, Anil G. Binary cloning vectors for efficient genetic transformation of rice. Current Science, 2002, 82(7): 873-876.
[102] Li L C, Qu R, de Kochko A, Fauquet C, Beachy R N. An improved rice transformation system using the biolistic method. Plant Cell Report,1993, 12(5): 250-255.
[103]王慧中, 黄大年, 鲁瑞芳, 刘俊君, 钱前, 彭学贤. 转mtlD/gutD双价基因水稻的耐盐性. 科学通报, 2000, 45: 724-728.
Wang H Z, Huang D N, Lu R F, Liu J J, Qian Q, Peng X X. Salt tolerance of transgenic rice transformed by mtlD/ gutD gene. Chinese Science Bulletin,2000, 45: 724-728. (in Chinese)
[104]郭龙彪, 薛大伟, 王慧中, 陈受宜, 卢德赵, 曾大力, 高振宇, 颜美仙, 黄大年, 钱前. 转基因与常规杂交相结合改良水稻耐盐性. 中国水稻科学, 2006, 20(2): 141-146.
Guo L B, Xue D W, Wang H Z, Chen S Y, Lu D Z, Zeng D L, Gao Z Y, Yan M X, Huang D N, Qian Q. Improvement of rice salt tolerance by using an integrated method of gene transformation and traditional breeding. Chinese Journal of Rice Science, 2006, 20(2): 141-146. (in Chinese)
[105] Ow D W. Recombinase-mediated gene stacking as a transformation operating system F. Journal of Integrative Plant Biology, 2011, 53: 512-519. |
[1] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[2] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[3] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[4] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[5] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[6] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[7] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[8] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[9] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[10] | ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. |
[11] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[12] | JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889. |
[13] | ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640. |
[14] | WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679. |
[15] | CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478. |
|