Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (12): 2365-2373.doi: 10.3864/j.issn.0578-1752.2014.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial Heterogeneity of Loess Tilled Slope Surface Roughness

 ZHANG  Li-1, 2 , ZHANG  Qing-Feng-1, 2 , ZHAO  Long-Shan-1, 2 , WANG  Jian-1, WU  Fa-Qi-1   

  1. 1、College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi;
    2、State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR,Yangling 712100, Shaanxi
  • Received:2014-01-14 Online:2014-06-15 Published:2014-04-15

Abstract: 【Objective】The objective of this paper is to reveal the spatial heterogeneity of surface roughness of 4 typical loess tilled slopes during different erosive stages under a micro-scale (2 cm×2 cm) condition.【Method】When slopes with 4 different gradients and tillage measures were prepared (artificial backhoe, artificial digging, contour tillage and straight cultivated slope (check), an erosive rainfall with a rainfall intensity of 60 mm/h was carried out. Soil surface roughness relative elevation data points were taken by a laser scanner and analyzed with both the semivariogram function and fractal dimension models.【Result】The result of classical statistical analysis showed that the loess tillage slope surface roughness has a weak spatial variability. The result of the semivariogram analysis indicated that the loess tilled slope surface roughness had a higher spatial autocorrelation, their spatial autocorrelation scale of surface roughness ranged from 2.02 m to 3.82 m. The spatial heterogeneity caused by the spatial structure characteristic accounted for the greater proportion of the total heterogeneity. The fractal dimension analysis showed that the surface roughness had good fractal features, and it ranged from 1.59 to 1.91. With the increase of gradient, the spatial distribution of slope surface roughness tended to complex, its spatial heterogeneity was stronger. The spatial heterogeneities of the artificial backhoe (AB), artificial digging (AD) and contour tillage (CT) increase in turn within the scope of the small scale, and had a good effect on soil and water conservation. 【Conclusion】The main reason for the differences of the spatial heterogeneity of surface roughness is the spatial structural characteristics formed by the integrated interaction of human farming and slope and the artificial cultivation. The space configuration pattern of surface roughness is mainly controlled by slope gradient factor in a smaller scale range, and by the rainfall with its erosion process in a larger scale range. Results of the study will lay a foundation for understanding and quantitative description of the coupling relationship between the surface roughness and erosion, and will also provide a theoretical basis for guiding future tillage practices in the loess sloped regions.

Key words: Loess Plateau , slope land , surface roughness , spatial heterogeneity , semi-variogram , fractal dimension

[1]张青峰, 王健, 赵龙山, 宋向阳, 梁心蓝. 基于M-DEM黄土人工锄耕坡面微地形特征研究. 干旱区资源与环境, 2012, 26(9): 149-153.

Zhang Q F, Wang J, Zhao L S, Song X Y, Liang X L. M-DEM-based micro-topography characteristics of artificial tillage loess slope. Journal of Arid Land Resources and Environment, 2012, 26(9): 149-153. (in Chinese)

[2]吴发启, 赵晓光, 刘秉正. 缓坡耕地侵蚀环境及动力机制分析.西安: 陕西科学技术出版社, 2000: 58-60.

Wu F Q, Zhao X G, Liu B Z. The Gentle Slope Cultivated Land Erosion Environment and the Analysis of dynamic Mechanism. Xi 'an: Shaanxi Science and Technology Press, 2000: 58-60. (in Chinese)

[3]Allmaras R R, Burwell R E, Larson W E, HoLT R F. Total porosity and random roughness of the interrow zone as influenced by tillage. USDA Conservation Research Report, 1966, 7: 7-28.

[4]Govers G, Takken I, Helming K. Soil roughness and overland ?ow. Agronomie. 2000, 20: 131-146.

[5]Hansen B, Schönning P, Sibbesen E. Roughness indices for estimation of depression storage capacity of tilled soil surfaces. Soil & Tillage Research. 1999, 52: 103-111.

[6]郑子成, 何淑勤, 吴发启. 降雨对地表糙度影响的研究. 水土保持研究. 2003, 10(2): 151-154.

Zheng Z C, He S Q, Wu F Q. Research on rainfall effect on surface roughness. Research of Soil and Water Conservation. 2003, 10(2): 151-154. (in Chinese)

[7]郑子成, 吴发启, 何淑勤. 耕作措施对产流作用的研究. 土壤, 2004, 36(3): 327-330.

Zheng Z C, Wu F Q, He S Q. The study of effects of cultivation measures upon runoff. Soils, 2004, 36(3): 327-330. (in Chinese)

[8]吴发启, 赵哓光, 刘秉正, 贾锐鱼. 地表糙度的量测方法及对地面径流和侵蚀的影响. 西北林学院学报, 1998, 13(2): 15-19.

Wu F Q, Zhao X G, Liu B Z, Jia R Y. On the method for measuring ground surface roughness and its effect upon runoff and erosion on the slope surface. Journal of Northwest Forestry College, 1998, 13(2): 15-19. (in Chinese)

[9]赵龙山, 梁心蓝, 张青峰, 兰敏, 吴发启. 基于DEM的黄土坡耕地地表糙度测定方法研究. 地理与地理信息科学, 2010, 26(4): 86-94.

Zhao L S, Liang X L, Zhang Q F, Lan M, Wu F Q. Surface roughness determination of the loess sloping field based on DEM. Geography and Geo-Information Science, 2010, 26(4): 86-94. (in Chinese)

[10]吴发启, 郑子成, 何淑勤. 坡耕地地表糙度的研究进展. 西北林学院学报, 2002, 17(3): 38-43.

Wu F Q, Zheng Z C, He S Q. Advances in the research of roughness on sloping farmland. Journal of Northwest Forestry University, 2002, 17(3):38-43. (in Chinese)

[11]Caniego F J, Espejo R, Mart??n M A, San José F. Multifractal scaling of soil spatial variability. Ecological Modelling, 2005(182): 291-303.

[12]Vidal Vázquez E, Vivas Miranda J G, Paz González A. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models. Ecological Modelling, 2005, 182:337-353

[13]孙志虎, 牟长城, 孙龙. 采用地统计学方法对落叶松人工纯林表层细根生物量的估计. 植物生态学报, 2006, 30(5): 771-779.

Sun Z H, Mou C C, Sun L. The estimate of fine root biomass in upper soil layer of larix olgensis plantation by geostatistics method. Journal of Plant Ecology, 2006, 30(5): 771-779. (in Chinese)

[14]李敏, 李毅, 曹伟, 张江辉. 不同尺度网格膜下滴灌土壤水盐的空间变异性分析. 水利学报, 2009, 40(10): 1210-1218.

Li M, Li Y, Cao W, Zhang J H. Spatial variability of soil moisture and salt content at different sampling grid scales under plastic mulch drip irrigation. Shui Li Xue Bao, 2009, 40(10): 1210-1218. (in Chinese)

[15]陈玉福, 于飞海, 董鸣. 毛乌素沙地沙生半灌木群落的空间异质性. 生态学报, 2000, 20(4): 568- 572.

Chen Y F, Yu F H, Dong M. Spatial heterogeneity of the psammophytic half-shrub community in Mu Us Sandland. Acta Ecologica Sinica, 2000, 20(4): 568- 572. (in Chinese)

[16]符素华, 张卫国, 刘宝元, 朱启疆, 吴敬东, 段淑怀, 李永贵. 北京山区小流域土壤侵蚀模型. 水土保持研究, 2001, 8(4): 114-120.

Fu S H, Zhang W G, Liu B Y, Zhu Q J, Wu J D, Duan S H, Li Y G. Beijing mountain area soil erosion model. Research of Soil and Water Conservation, 2001, 8(4): 114-120. (in Chinese)

[17]Huang Y F, Chen X, Huang G H, Chen Bing, Zeng G M, Li J B, Xia J. GIS-based distributed model for simulating runoff and sediment load in the Malian River Basin. Hydrobiologia, 2003, 49(4): 127-134.

[18]李鹏, 李占斌, 郑良勇. 黄土坡面水蚀动力与侵蚀产沙临界关系试验研究. 应用基础与工程科学学报, 2010, 18(3): 435-441.

Li P, Li Z B, Zheng L Y. Experimental study on the critical relation between water erosion dynamics and soil erosion on steep loess slope. Journal of Basic Science and Engineering, 2010, 18(3): 435-441. (in Chinese)

[19]赵龙山, 张青峰, 梁心蓝, 曹伟鹏, 吴发启. 基于GIS的坡耕地数字高程模型的建立与应用. 农业工程学报, 2010, 26(11): 317-322.

Zhao L S, Zhang Q F, Liang X L, Cao W P, Wu F Q. Establishment and application of DEM for loess slope land based on GIS. Transactions of the CSAE, 2010, 26(11): 317-322. (in Chinese)

[20]司建华, 冯起, 鱼腾飞, 常宗强, 席海洋, 苏永红. 额济纳绿洲土壤养分的空间异质性. 生态学杂志, 2009, 28(12): 2600-2606.

Si J H, Feng Q, Yu T F, Chang Z Q, Xi H Y, Su Y H. Spatial heterogeneity of soil nutrients in Ejina oasis. Chinese Journal of Ecology, 2009, 28(12): 2600-2606. (in Chinese)

[21]罗勇, 陈家宙, 林丽蓉, 王双. 基于土地利用和微地形红壤丘岗区土壤水分时空变异性. 农业工程学报, 2009, 25(2): 36-41.

Luo Y, Chen J Z, Lin L R, Wang S. Spatial and temporal variability of soil moisture in hilly red soil region based on land use and micro topography. Transactions of the CSAE, 2009, 25(2): 36-41. (in Chinese)

[22]刘春利, 胡伟, 贾宏福, 邵明安. 黄土高原水蚀风蚀交错区坡地土剖面饱和导水率空间异质性. 生态学报, 2012, 32(4): 1211-1219.

Liu C L, Hu W, Jia H F, Shao M A. Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau. Acta Ecologica Sinica, 2012, 32(4): 1211-1219. (in Chinese)

[23]江冲亚, 方红亮, 魏珊珊. 地表粗糙度参数化研究综述. 地球科学进展, 2012, 27(3): 292-303.

Jiang C Y, Fang H L, Wei S S. Review of land surface roughness parameterization study. Advances in Earth Science, 2012, 27(3): 292-303. (in Chinese)

[24]李赵琴, 张士菊, 陈祖梅, 陈崇德. 漳河水库入库径流序列变化趋势分析. 水资源与水工程学报, 2011, 22(2): 153-156.

Li Z Q, Zhang S J, Chen Z M, Chen C D. Analysis of change trend of inflow runoff series in Zhanghe reservoir. Journal of Water Resources &Water Engineering, 2011, 22(2): 153-156. (in Chinese)

[25]白美健, 许迪, 李益农, 李福祥. 畦面微地形空间变异性分析. 水利学报, 2006, 37(7): 813- 819.

Bai M J, Xu D, Li Y N, Li F X. Analysis on spatial variability of micro-topography in border fields. Shui Li Xue Bao, 2006, 37(7): 813-819. (in Chinese)

[26]高树静, 赵龙山, 梁心蓝, 张青峰, 吴发启. 人工降雨条件下坡耕地地表糙度的时空变异分布研究. 水土保持研究, 2010, 17(3): 12-16.

Gao S J, Zhao L S, Liang X L, Zhang Q F, Wu F Q. Surface roughness spatiotemporal distribution of the slope land under simulated rainfall. Research of Soil and Water Conservation, 17(3): 12-16. (in Chinese)

[27]赵龙山, 宋向阳, 张青峰, 吴发启. 黄土坡耕地地表微地形空间变异性研究. 干旱地区农业研究, 2011, 29(1): 146-150.

Zhao L S, Song X Y, Zhang Q F, Wu F Q. Spatial variability of micro-topography in the loess slope land. Agricultural Research in the Arid Areas, 2011, 29(1): 146-150. (in Chinese)

[28]贾腾斌, 吴发启, 赵龙山, 王林华. 坡耕地上耕作形成的微地形复杂度特征与分析. 水土保持学报, 2013, 27(4): 152-156.

Jia T B, Wu F Q, Zhao L S, Wang L H. Micro-relief slope surface complexity characteristics of slope farm land under different tillage practices. Journal of Soil and Water Conservation, 2013, 27(4): 152-156. (in Chinese)

[29]张莉, 张青峰, 郑子成, 王健. 基于M-DEM的黄土人工锄耕坡面水系分维特征研究. 水土保持研究, 2012, 19(5): 7-11.

Zhang L, Zhang Q F, Zheng Z C, Wang J. M-DEM-based stream fractal dimension of artificial backhoe cultivated loess slope. Research of Soil and Water Conservation, 2012, 19(5): 7-11. (in Chinese)
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[3] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[4] MA HongMei,CAO HanBing,XIE YingHe,LI TingLiang,LIU Kai,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin,WU WenYue,LI WenQi. Evaluation on Fertilizer Application and Its Economic-Environmental Benefits Associated with Fertilizer Reduction Potential for Dryland Wheat in Loess Plateau of Southern Shanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(13): 2804-2817.
[5] LIU Kai,XIE YingHe,LI TingLiang,MA HongMei,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Nitrogen Reduction and Film Mulching on Wheat Yield and Nutrient Absorption and Utilization in Loess Plateau [J]. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607.
[6] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[7] WANG Li,WANG ZhaoHui,GUO ZiKang,TAO ZhenKui,ZHENG MingJun,HUANG Ning,GAO ZhiYuan,ZHANG XinXin,HUANG TingMiao. Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(17): 3527-3540.
[8] ZHANG Qi,WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi,LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
[9] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
[10] QIU MengLong,CAO XiaoShu,ZHOU Jian,FENG XiaoLong,GAO XingChuan. Spatial Differentiation and Impact Factors of Grain Yield Per Hectare in Weibei Plateau Based on GWR Model: A Case Study of Binxian County, Shannxi [J]. Scientia Agricultura Sinica, 2019, 52(2): 273-284.
[11] WANG WenXin,WANG WenLong,GUO MingMing,WANG TianChao,KANG HongLiang,YANG Bo,ZHAO Man,CHEN ZhuoXin. Effects of Natural Vegetation Restoration on Characteristics of Soil Aggregate and Soil Erodibility of Gully Heads in Gully Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2845-2857.
[12] YU Qi,LI Jun,ZHOU Dong,WANG ShuLan,WANG Hao,LI Ao,ZHANG YuanHong,NING Fang,WANG XiaoLi,WANG Rui. Effects of No-Tillage/Subsoiling Rotational Tillage System on Increasing Soil Water Storage and Crop Yield Under Different Precipitation Patterns of Winter Wheat in the Loess Plateau [J]. Scientia Agricultura Sinica, 2019, 52(11): 1870-1882.
[13] MA QingXia,WANG ZhaoHui,HUI XiaoLi,ZHANG Xiang,ZHANG YueYue,HOU SaiBin,HUANG Ning,LUO LaiChao,ZHANG ShiJun,DANG HaiYan. Optimization of Phosphorus Rate and Soil Available Phosphorus Based on Grain Yield and Nutrient Contents in Dryland Wheat Production [J]. Scientia Agricultura Sinica, 2019, 52(1): 73-85.
[14] LI Ting, LI ShiQing, ZHAN Ai, LIU JianLiang. Effects of Film Mulching, Nitrogen Fertilizer, Plant Density and Its Interaction on Nitrogen Accumulation, Translocation and Production Efficiency of Spring Maize on Dryland of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(8): 1504-1517.
[15] XIA MengJie, MA LeLe, SHI QianYun, CHEN ZhuJun, ZHOU JianBin. The Relationship of NO3--N Leaching and Rainfall Types During Summer Fallow in the Loess Plateau Dryland [J]. Scientia Agricultura Sinica, 2018, 51(8): 1537-1546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!