Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (16): 2845-2857.doi: 10.3864/j.issn.0578-1752.2019.16.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Natural Vegetation Restoration on Characteristics of Soil Aggregate and Soil Erodibility of Gully Heads in Gully Region of the Loess Plateau

WANG WenXin1,WANG WenLong1,2(),GUO MingMing1,WANG TianChao1,KANG HongLiang1,YANG Bo1,ZHAO Man1,CHEN ZhuoXin1   

  1. 1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi;
    2 Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling 712100, Shaanxi;
  • Received:2019-05-09 Accepted:2019-06-11 Online:2019-08-16 Published:2019-08-21
  • Contact: WenLong WANG E-mail:wlwang@nwsuaf.edu.cn

Abstract:

【Objective】 Gully head was the most active geomorphic part in gully region of the Loess Plateau, which was related to the soil erosion of the entire slope gully system. This research aimed at evaluating the effects of vegetation restoration on soil aggregate characteristics and soil erodibility of gully heads in gully region of the Loess Plateau. The research results could provide a scientific basis for regional ecological environment restoration and soil and water conservation benefit evaluation. 【Method】 With the farmland as control check, an investigation about soil aggregate characteristics and soil erodibility of different soil layers (0-10, 10-25, 25-40 cm) with different natural vegetation restoration ages (0-30 a) of gully heads was carried out. The aggregates amount, water-stable aggregate content (WR0.25), mean weight diameter (MWD), geometric mean diameter (GMD), destruction rate (PAD) and fractal dimension (D) were examined by dry and wet sieving methods. Soil mechanical composition and organic matter content were determined which were used for calculating soil erodibility factor K. 【Result】 (1) WR0.25, MWD and GMD of vegetation gully heads increased by 11.49%- 84.43%, 0.18-2.05 times, and 7.53%-108.62%, respectively, compared with the CK (farmland of gully heads). These three indicators linear increased with vegetation restoration years increasing (P<0.01), and decreased with the increase of soil depth; (2) PAD and D of soil aggregate of vegetation gully heads decreased with linear increase of vegetation restoration time (P<0.01), which was 3.81%-32.14% and 0.55%-6.63% lower than that of CK, respectively. Both of them increased with the increase of soil layer; (3) K decreased linearly with the increase of vegetation restoration period (P<0.01), which was 5.43%-14.44% lower than that of CK, and K increased with the increase of soil depth.【Conclusion】The increase of organic matter content under vegetation restoration conditions played an important role in the formation and stability of aggregate. The decrease of soil erodibility of gully heads was closely related to the increase of water-stable aggregate content and stability of aggregate. Under natural recovery conditions, soil aggregate stability and soil anti-erodibility of gully heads were significantly improved during the restoration period of 22-30 a.

Key words: soil aggregate, soil erodibility, vegetation restoration, gully head, gully region of the Loess Plateau

Fig. 1

Research area and sampling points"

Table 1

Basic information of each experimental site"

样地编号
Site code
恢复年限
Restoration age (a)
优势种群落
Dominant species
坡度
Slope (°)
坡向
Aspect
海拔
Altitude (m)
植被覆盖度
Vegetation coverage (%)
CK 0 玉米 Zea mays 2 N66°E 1301 -
2 S 1275 -
3 N52°E 1358 -
NR3 3 猪毛蒿 Artemisia scoparia 2 S30°W 1360 45
3 S30°E 1323 46
4 S36°W 1351 44
NR8 8 冰草+铁杆蒿
Agropyron cristatum+Artemisia sacrorum
4 S41°W 1269 55
5 S48°E 1303 55
5 E 1271 58
NR15 15 铁杆蒿 Artemisia sacrorum 3 N62°E 1267 63
4 N49°E 1272 64
5 S 1289 61
NR22 22 铁杆蒿+白羊草
Artemisia sacrorum+Bothriochloa ischaemum
6 S43°E 1343 72
6 S25°W 1278 76
7 S 1302 78
NR30 30 白羊草 Bothriochloa ischaemum 3 E 1262 83
4 S 1272 75
5 S51°E 1265 76

Table 2

WR0.25, MWD and GMD of different restoration age sites of gully heads"

样地编号 Site code 土层Soil layer (cm) WR0.25 (%) MWD (mm) GMD (mm)
CK 0—10 28.194±2.239Da 0.442±0.037Da 0.210±0.010Ea
10—25 26.410±1.248Dab 0.374±0.014Cb 0.196±0.002Da
25—40 22.910±0.304Db 0.311±0.005Dc 0.181±0.001Db
0—40 25.838±2.653D 0.376±0.058E 0.196±0.013E
NR3 0—10 32.519±2.440Da 0.520±0.043Da 0.230±0.013DEa
10—25 29.335±0.735Da 0.460±0.018Ca 0.213±0.004Da
25—40 24.757±0.421Db 0.352±0.017Db 0.189±0.002Db
0—40 28.870±3.518D 0.444±0.075E 0.211±0.019E
NR8 0—10 38.078±2.010Ca 0.674±0.060Ca 0.271±0.016Da
10—25 35.183±1.727Ca 0.625±0.050Bab 0.255±0.013Cab
25—40 30.944±0.983Cb 0.539±0.003Cb 0.230±0.003Cb
0—40 34.735±3.353C 0.613±0.072D 0.252±0.021D
NR15 0—10 44.081±1.227Ca 0.784±0.012Ca 0.315±0.005Ca
10—25 40.119±1.705Bb 0.694±0.037Bb 0.285±0.012Cb
25—40 37.946±1.326Bb 0.651±0.028Bb 0.269±0.008Bb
0—40 40.715±2.917B 0.710±0.062C 0.290±0.021C
NR22 0—10 48.641±2.158ABa 1.139±0.072Ba 0.412±0.024Ba
10—25 46.441±2.370Aa 1.061±0.079Aab 0.382±0.023Ba
25—40 39.771±1.237ABb 0.877±0.082Ab 0.316±0.021Ab
0—40 44.951±4.261A 1.026±0.135B 0.370±0.046B
NR30 0—10 52.439±2.424Aa 1.312±0.064Aa 0.477±0.035Aa
10—25 49.297±1.889Aa 1.168±0.081Aa 0.419±0.028Aa
25—40 41.383±1.247Ab 0.952±0.053Ab 0.336±0.016Ab
0—40 47.706±5.030A 1.144±0.162A 0.411±0.064A

Fig. 2

Variation of destruction rate of soil aggregate and fractal dimension of different restoration age sites of gully heads Different capital letters and lowercase letters indicate significant difference at 5% level between different sites in the same soil layer and between different soil layers in the same site, respectively. The same as below"

Table 3

Soil mechanical composition and organic matter content of different restoration year sites of gully heads"

样地编号
Site code
土层
Soil layer (cm)
黏粒含量CLA
Clay content (%)
粉粒含量SIL
Silt content (%)
砂粒含量SAN
Sand content (%)
有机质含量SOM
Soil organic matter content (%)
CK 0—10 17.95±0.38BCa 64.40±1.00ABb 17.66±0.75BCa 0.81±0.04Da
10—25 16.44±0.45Cab 65.77±0.35Bab 17.78±0.70Aa 0.77±0.01Ea
25—40 14.98±1.49Cb 66.76±1.06Ba 18.26±1.84Aa 0.56±0.05Ab
0—40 16.46±1.52C 65.65±1.30C 17.90±1.24A 0.72±0.12F
NR3 0—10 20.11±1.73ABa 66.33±0.95ABab 13.56±0.94Ca 1.00±0.27Da
10—25 19.70±0.99ABa 65.63±0.37Bb 14.67±0.62Ba 1.02±0.05Da
25—40 18.05±0.50Ba 67.50±0.36Ba 14.46±0.80Ba 0.79±0.12Ba
0—40 19.28±1.49B 66.49±0.99ABC 14.23±0.93CD 0.94±0.20E
NR8 0—10 17.93±0.45BCa 65.99±1.08ABa 16.08±0.91BCa 1.52±0.03Ca
10—25 19.40±1.31Ba 66.83±0.51ABa 13.77±1.66BCa 1.21±0.03Cb
25—40 18.62±0.21Ba 67.62±0.59Ba 13.76±0.54BCa 1.09±0.04Cc
0—40 18.65±1.01B 66.81±1.02AB 14.54±1.58BC 1.27±0.19D
NR15 0—10 20.43±1.15Aa 63.91±0.49Bc 15.66±1.46BCa 1.76±0.10Ca
10—25 21.96±0.38Aa 65.95±0.26Bb 12.09±0.32Cb 1.26±0.08Cb
25—40 21.51±2.32Aa 67.26±0.63Ba 11.24±1.99CDb 1.15±0.04Cb
0—40 21.30±1.64A 65.71±1.46BC 13.00±2.39D 1.39±0.28C
NR22 0—10 17.85±0.41Ca 66.52±0.98Ab 15.64±0.69BCa 2.20±0.11Ba
10—25 19.59±1.99ABa 65.83±1.79Bb 14.58±1.12Ba 1.82±0.15Bb
25—40 20.63±0.48ABa 69.97±0.56Aa 9.40±0.56Db 1.19±0.00Cc
0—40 19.36±1.66B 67.44±2.19A 13.21±2.85CD 1.73±0.43B
NR30 0—10 14.05±0.81Dc 64.49±1.47ABb 21.46±2.23Aa 3.06±0.24Aa
10—25 16.19±0.18Cb 67.90±0.59Aa 15.91±0.74ABb 2.09±0.11Ab
25—40 21.65±1.06Aa 68.46±1.26ABa 9.89±0.22Dc 1.33±0.03Dc
0—40 17.30±3.29C 66.96±2.11A 15.75±4.92B 2.16±0.72A

Fig. 3

Variation of soil erodibility of different restoration age sites of gully heads"

Table 4

Correlate relationships between characteristic of soil aggregate, mechanical composition, organic matter content and soil erodibility of gully heads"

指标 Index WR0.25 MWD GMD PAD D CLA SIL SAN SOM K
WR0.25 1
MWD 0.970** 1
GMD 0.969** 0.994** 1
PAD -0.907** -0.851** -0.873** 1
D -0.972** -0.999** -0.997** 0.860** 1
CLA 0.042 -0.078 -0.142 0.088 0.097 1
SIL -0.050 0.055 -0.018 0.377 -0.030 0.252 1
SAN -0.007 0.031 0.116 -0.254 -0.058 -0.876** -0.687** 1
SOM 0.917** 0.919** 0.946** -0.903** -0.929** -0.278 -0.237 0.326 1
K -0.961** -0.940** -0.933** 0.838** 0.940** -0.155 -0.041 0.137 -0.885** 1
[1] 陈绍宇, 许建民, 王文龙, 赵安成, 李怀友 . 黄土高塬沟壑区董志塬沟头溯源侵蚀特征及其防治途径. 水土保持通报, 2009,29(4):37-41.
CHEN S Y, XU J M, WANG W L, ZHAO A C, LI H Y . Erosion features of head-cut and its control measures on Dongzhiyuan of the Loess Plateau. Bulletin of Soil and Water Conservation, 2009,29(4):37-41. (in Chinese)
[2] 陈绍宇, 许建民, 王文龙 . 高塬沟壑区董志塬沟头溯源侵蚀典型调查研究. 中国农学通报, 2009,25(9):258-263.
CHEN S Y, XU J M, WANG W L . The research on erosional types and process of head-cut on Dongzhiyuan of Loess Plateau. Chinese Agricultural Science Bulletin, 2009,25(9):258-263. (in Chinese)
[3] 郭明明 . 黄土高塬沟壑区退耕草地沟头溯源侵蚀及形态演化特征[D]. 杨凌: 西北农林科技大学, 2016.
GUO M M . Gully headward erosion and its morphology evolution characteristics of rehabilitated grass land in the gully region of the Loess Plateau[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[4] 康宏亮 . 黄土高塬沟壑区土地利用方式对沟头溯源侵蚀过程的影响[D]. 杨凌: 西北农林科技大学, 2017.
KANG H L . Effect of landuse on gully headward erosion process in the gully region of the Loess Plateau[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[5] LAL R . Physical management of soils of the tropics: priorities for the 21st century. Soil Science, 2000,165(3):191-207.
[6] ZHOU X, PENG X, PETH S, XIAO T Q . Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron- based micro-computed tomography. Soil & Tillage Research, 2012,124:17-23.
[7] 祁迎春, 王益权, 刘军, 于雄胜, 周彩景 . 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较. 农业工程学报, 2011,27(1):340-347.
QI Y C, WANG Y Q, LIU J, YU X S, ZHOU C J . Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index. Transactions of the CSAE, 2011,27(1):340-347. (in Chinese)
[8] 唐骏, 党廷辉, 薛江, 文月荣, 徐娜, 吴得峰 . 植被恢复对黄土区煤矿排土场土壤团聚体特征的影响. 生态学报, 2016,36(16):5067-5077.
doi: 10.5846/stxb201501240192
TANG J, DANG T H, XUE J, WEN Y R, XU N, WU D F . Effects of vegetation restoration on soil aggregate characteristics of an opencast coal mine dump in the loess area. Acta Ecologica Sinica, 2016,36(16):5067-5077. (in Chinese)
doi: 10.5846/stxb201501240192
[9] 刘雷, 安韶山, 黄华伟 . 应用Le Bissonnais法研究黄土丘陵区植被类型对土壤团聚体稳定性的影响. 生态学报, 2013,33(20):6670-6680.
doi: 10.5846/stxb201301160103
LIU L, AN S S, HUANG H W . Application of Le Bissonnais method to study soil aggregate stability under different vegetaion on the Loess Plateau. Acta Ecologica Sinica, 2013,33(20):6670-6680. (in Chinese)
doi: 10.5846/stxb201301160103
[10] AN S S, MENTLER A, MAYER H, BLUM W E H . Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010,81(3):226-233.
[11] AN S S, ZHENG F L, ZHANG F, VAN P S, HAMMER U, Franz M . Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 2008,75(3):248-256.
[12] 张超, 刘国彬, 薛萐, 宋籽霖, 张昌胜 . 黄土丘陵区不同植被类型根际土壤微团聚体及颗粒分形特征. 中国农业科学, 2011,44(3):507-515.
ZHANG C, LIU G B, XUE S, SONG Z L, ZHANG C S . Fractal features of rhizosphere soil microaggregate and particle-size distribution under different vegetation types in the hilly-gully region of Loess Plateau. Scientia Agricultura Sinica, 2011,44(3):507-515. (in Chinese)
[13] 马祥华, 焦菊英, 温仲明, 白文娟, 焦峰 . 黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究. 水土保持研究, 2005,12(1):17-21.
MA X H, JIAO J Y, WEN Z M, BAI W J, JIAO F . The changes of soil physical properties in abandoned lands during vegetation restoration in hilly and gully regions on the Loess Plateau. Research of Soil and Water Conservation, 2005,12(1):17-21. (in Chinese)
[14] 严方晨, 焦菊英, 曹斌挺, 于卫洁, 魏艳红, 寇萌, 胡澍 . 黄土丘陵沟壑区撂荒地不同演替阶段植物群落的土壤抗蚀性—以坊塌流域为例. 应用生态学报, 2016,27(1):64-72.
YAN F C, JIAO J Y, CAO B T, YU W J, WEI Y H, KOU M, HU S . Soil anti-erodibility of abandoned lands during different succession stages of plant community in hilly-gullied region of the Loess Plateau: Take Fangta small watershed as an example. Chinese Journal of Applied Ecology, 2016,27(1):64-72. (in Chinese)
[15] 郭明明, 王文龙, 康宏亮, 杨波 . 黄土高塬沟壑区植被自然恢复年限对坡面土壤抗冲性的影响. 农业工程学报, 2018,34(22):138-146.
GUO M M, WANG W L, KANG H L, YANG B . Effect of natural vegetation restoration age on slope soil anti-scourability in gully region of Loess Plateau. Transactions of the CSAE, 2018,34(22):138-146. (in Chinese)
[16] 吴彦, 刘世全, 付秀琴, 王金锡 . 植物根系提高土壤水稳性团粒含量的研究. 土壤侵蚀与水土保持学报, 1997,3(1):45-49.
WU Y, LIU S Q, FU X Q, WANG J X . Study on improving soil’s water stable aggregates amounts by botanic roots. Journal of Soil Erosion and Soil and Water Conservation, 1997,3(1):45-49. (in Chinese)
[17] 陈文媛, 徐学选, 华瑞, 丁康, Shahmir Ali Kalhoro 杜峰, . 黄土丘陵区林草退耕年限对土壤团聚体特征的影响. 环境科学学报, 2017,37(4):1486-1492.
CHEN W Y, XU X X, HUA R, DING K, SHAHMIR A K, DU F . Effects of forestlands and grasslands on soil aggregates under different vegetation restoration ages in loess hilly region. Acta Scientiae Circumstantiae, 2017,37(4):1486-1492. (in Chinese)
[18] 曾全超, 董扬红, 李鑫, 李娅芸, 刘雷, 安韶山 . 基于Le Bissonnais法对黄土高原森林植被带土壤团聚体及土壤可蚀性特征研究. 中国生态农业学报, 2014,22(9):1093-1101.
ZENG Q C, DONG Y H, LI X, LI Y Y, LIU L, AN S S . Soil aggregate stability and erodibility under forest vegetation in the Loess Plateau using the Le Bissonnais method. Chinese Journal of Eco-Agriculture, 2014,22(9):1093-1101. (in Chinese)
[19] 安韶山, 张扬, 郑粉莉 . 黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应. 中国水土保持科学, 2008,6(2):66-70, 82.
AN S S, ZHANG Y, ZHENG F L . Fractal dimension of the soil aggregate and its responds to plant rehabilitation in the hilly-gully region of Loess Plateau. Science of Soil and Water Conservation, 2008,6(2):66-70, 82. (in Chinese)
[20] 郭曼, 郑粉莉, 安韶山, 刘雨, 王彬, Frederic Darboux . 应用 Le Bissonnais 法研究黄土丘陵区土壤团聚体稳定性. 中国水土保持科学, 2010,8(2):68-73.
GUO M, ZHENG F L, AN S S, LIU Y, WANG B, FREDERIC D . Application of Le Bissonnais method to study soil aggregate stability in the hilly-gully region. Science of Soil and Water Conservation, 2010,8(2):68-73. (in Chinese)
[21] 夏露, 宋孝玉, 符娜, 李怀有, 李垚林 . 陇东黄土塬区不同下垫面条件下侵蚀产沙的降雨阈值. 水科学进展, 2018,29(6):828-838.
XIA L, SONG X Y, FU N, LI H Y, LI Y L . Threshold standard of erosive rainfall under different underlying surface conditions in the Loess Plateau Gully Region of East Gansu, China. Advances in Water Science, 2018,29(6):828-838.(in Chinese)
[22] 梁明易, 刘谞承, 曾嘉强, 汪涛 . 陇东董志塬植被生态现状及评价. 生态科学, 2010,29(4):351-357.
LIANG M Y, LIU X C, ZENG J Q, WANG T . The investigation and evaluation of the natural vegetation in Dongzhi Plateau, eastern Gansu Province. Ecological Science, 2010,29(4):351-357. (in Chinese)
[23] GUO M M, WANG W L, KANG H L, YANG B . Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. Journal of Arid Land 2018,10(5):712-725.
[24] 李强, 刘国彬, 许明祥, 张正, 孙会 . 黄土丘陵区撂荒地土壤抗冲性及相关理化性质. 农业工程学报, 2013,29(10):153-159.
LI Q, LIU G B, XU M X, ZHANG Z, SUN H . Soil anti-scouribility and its related physical properties on abandoned land in the Hilly Loess Plateau. Transactions of the CSAE, 2013,29(10):153-159. (in Chinese)
[25] 周虎, 吕贻忠, 杨志臣, 李保国 . 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007,40(9):1973-1979.
ZHOU H, LÜ Y Z, YANG Z C, LI B G . Effects of conservation tillage on soil aggregates in Huabei Plain, China. Scientia Agricultura Sinica, 2007,40(9):1973-1979. (in Chinese)
[26] VAN B C H M . Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal, 1949,14:20-23.
[27] GARDNER W R . Representation of soil aggregate-size distribution by a logarithmic-normal distribution. Soil Science Society of America Proceedings, 1956,20:151-153.
[28] 袁晶晶, 同延安, 卢绍辉, 袁国军 . 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量. 农业工程学报, 2018,34(3):159-165.
YUAN J J, TONG Y A, LU S H, YUAN G J . Biochar and nitrogen amendments improving soil aggregate structure and jujube yields. Transactions of the CSAE, 2018,34(3):159-165. (in Chinese)
[29] 杨培岭, 罗远培, 石元春 . 用粒径的重量分布表征的土壤分形特征. 科学通报, 1993,38(20):1896-1899.
YANG P L, LUO Y P, SHI Y C . Fractal features of soils characterized by grain weight distribution. Chinese Science Bulletin, 1993,38(20):1896-1899. (in Chinese)
[30] WILLIAMS J R, RENARD K G, DYKE P T . EPIC: A new method for assessing erosion's effect on soil productivity. Journal of Soil and Water Conservation, 1983,38(5):381-383.
[31] WANG B, ZHANG G H, SHI Y Y, ZHANG X C, REN Z P, ZHU L J . Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surface Processes and Landforms, 2013,38(14):1725-1734.
[32] 徐红伟, 吴阳, 乔磊磊, 李袁泽, 薛萐, 瞿晴 . 不同植被带生态恢复过程土壤团聚体及其稳定性—以黄土高原为例. 中国环境科学, 2018,38(6):2223-2232.
XU H W, WU Y, QIAO L L, LI Y Z, XUE S, QU Q . Soil aggregates and stability in the ecological restoration process under different vegetation zones on loess plateau. China Environmental Science, 2018,38(6):2223-2232. (in Chinese)
[33] IMESON A C, VERSTRAETEN J M . The microaggregation and erodibility of some semi-arid and Mediterranean soils. Catena Supplement, 1989,14:11-24.
[34] 吴承祯, 洪伟 . 不同经营模式土壤团粒结构的分形特征研究. 土壤学报, 1999,36(2):162-167.
WU C Z, HONG W . Study on fractal features of soil aggregate structure under different management patterns. Acta Pedologica Sinica, 1999,36(2):162-167. (in Chinese)
[35] 陈浩, 方海燕, 蔡强国, 周金星, 黄鑫 . 黄河中游的侵蚀环境与植被恢复前景. 地理研究, 2007,26(4):735-744.
CHEN H, FANG H Y, CAI Q G, ZHOU J X, HUANG X . The impact of environmental variables on sediment yield and vegetation recovering prospect in the middle Yellow River. Geographical Research, 2007,26(4):735-744. (in Chinese)
[36] 杜华栋 . 黄土丘陵沟壑区优势植物对不同侵蚀环境的适应研究[D]. 杨凌: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2013.
DU H D . Study on adaptations of dominant plants to different soil erosion environments in hilly-gully region of the Loess Plateau[D]. Yangling: Graduate School of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education), 2013. (in Chinese)
[37] 丁康 . 长武塬边坡不同植被对土壤物理性质的影响研究[D]. 杨凌: 西北农林科技大学, 2018.
DING K . Influence of different vegetation types on soil physical properties in Changwu tableland slope[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[38] 魏慧, 赵文武, 王晶 . 土壤可蚀性研究述评. 应用生态学报, 2017,28(8):2749-2759.
WEI H, ZHAO W W, WANG J . Research progress on soil erodibility. Chinese Journal of Applied Ecology, 2017,28(8):2749-2759. (in Chinese)
[39] 董莉丽, 陈益娥, 李晓华 . 吴起县退耕还林对土壤团聚体水稳性和养分含量的影响. 林业科学, 2014,50(5):140-146.
doi: 10.11707/j.1001-7488.20140518
DONG L L, CHEN Y E, LI X H . Effects of the Returning Farmland to Forests on Content of Water Stable Soil Aggregates and the Nutrients in Wuqi County. Scientia Silvae Sinicae, 2014,50(05):140-146. (in Chinese)
doi: 10.11707/j.1001-7488.20140518
[40] 王晓娟, 贾志宽, 梁连友, 韩清芳, 丁瑞霞, 杨保平, 崔荣美 . 旱地施有机肥对土壤有机质和水稳性团聚体的影响. 应用生态学报, 2012,23(1):159-165.
WANG X J, JIA Z K, LIANG L Y, HAN Q F, DING R X, YANG B P, CUI R M . Effects of organic manure application on dry land soil organic matter and water stable aggregates. Chinese Journal of Applied Ecology, 2012,23(1):159-165. (in Chinese)
[41] 董莉丽 . 不同土地利用类型下土壤水稳性团聚体的特征. 林业科学, 2011,47(4):95-100.
doi: 10.11707/j.1001-7488.20110415
DONG L L . Characteristics of soil water stable aggregates under different land-use types. Scientia Silvae Sinicae, 2011,47(4):95-100. (in Chinese)
doi: 10.11707/j.1001-7488.20110415
[42] SIX J, PAUSTIAN K, ELLIOTT E T, COMBRINK C . Soil structure and organic matter: I. distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 2000,64:681-689.
[43] 苏永中, 王芳, 张智慧, 杜明武 . 河西走廊中段边缘绿洲农田土壤性状与团聚体特征. 中国农业科学, 2007,40(4):741-748.
SU Y Z, WANG F, ZHANG Z H, DU M W . Soil properties and soil aggregate characteristics in marginal farmlands of oasis in Middle Hexi Corridor Region. Scientia Agricultura Sinica, 2007,40(4):741-748. (in Chinese)
[44] 马建辉, 叶旭红, 韩冰, 李文, 虞娜, 范庆锋, 张玉玲, 邹洪涛, 张玉龙 . 膜下滴灌不同灌水控制下限对设施土壤团聚体分布特征的影响. 中国农业科学, 2017,50(18):3561-3571.
doi: 10.3864/j.issn.0578-1752.2017.18.012
MA J H, YE X H, HAN B, LI W, YU N, FAN Q F, ZHANG Y L, ZOU H T, ZHANG Y L . Effects of different controlled irrigation low limits on the size distribution of soil aggregates with drip irrigation under film mulching in a greenhouse soil. Scientia Agricultura Sinica, 2017,50(18):3561-3571. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.18.012
[45] SIX J, BOSSUYT H, DEGRYZE S, DENEF K . A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 2004,79(1):7-31.
[1] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[2] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[3] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[4] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
[5] ZHANG Qi,WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi,LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
[6] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[7] MA JianHui, YE XuHong, HAN Bing, LI Wen, YU Na, FAN QingFeng, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Controlled Irrigation Low Limits on the Size Distribution of Soil Aggregates with Drip Irrigation Under Film Mulching in a Greenhouse Soil [J]. Scientia Agricultura Sinica, 2017, 50(18): 3561-3571.
[8] TAN Huang, YANG Pei-ling, REN Shu-mei, YU Hao-liang, WANG Jia-hang. Effects of the Application of Flue Gas Desulphurized Gypsum and Water Leaching on Sodic Soil Aggregates [J]. Scientia Agricultura Sinica, 2016, 49(4): 705-716.
[9] HE Yu-ting, WANG Chang-quan, SHEN Jie, LI Bin, LI Bing, CHEN Lin, PAN Xing-bing. Effects of Two Biochars on Red Soil Aggregate Stability and Microbial Community [J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342.
[10] HOU Xiao-na, LI Hui, ZHU Liu-bing, HAN Yan-lai, TANG Zheng, LI Zhong-fang, TAN Jin-fang, ZHANG Shui-qing. Effects of Biochar and Straw Additions on Lime Concretion Black Soil Aggregate Composition and Organic Carbon Distribution [J]. Scientia Agricultura Sinica, 2015, 48(4): 705-712.
[11] ZHENG Xue-bo, FAN Jian-bo, ZHOU Jing. Effects of Biogas Slurry on Soil Organic Matter and Characteristics of Soil Aggregates in Upland Red Earth [J]. Scientia Agricultura Sinica, 2015, 48(16): 3201-3210.
[12] ZHENG Zi-Cheng, LIU Min-Ying, LI Ting-Xuan. Distribution Characteristics of Organic Carbon Fractions in Soil Aggregates Under Tea Plantation of Different Ages [J]. Scientia Agricultura Sinica, 2013, 46(9): 1827-1836.
[13] CHENG Ke-1, LI Jun-1, MAO Hong-Ling-2. Effects of Different Rotational Tillage Patterns on Soil Physical Properties in Rainfed Wheat Fields of the Loess Plateau [J]. Scientia Agricultura Sinica, 2013, 46(18): 3800-3808.
[14] ZHANG Peng, JIA Zhi-Kuan, WANG Wei, LU Wen-Tao, GAO Fei, NIE Jun-Feng. Effects of Straw Returning on Characteristics of Soil Aggregates in Semi-arid Areas in Southern Ningxia of China [J]. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520.
[15] LIU Min-Ying, ZHENG Zi-Cheng, LI Ting-Xuan. Distribution Characteristics of Microbial Biomass Carbon and Nitrogen in Soil Aggregates under Tea Plantation [J]. Scientia Agricultura Sinica, 2011, 44(15): 3162-3168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!