Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (11): 2088-2098.doi: 10.3864/j.issn.0578-1752.2014.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of a Genetic Linkage Map in Mungbean

 WU  Chuan-Shu-1, 2 , WANG  Li-Xia-2, WANG  Su-Hua-2, CHEN  Hong-Lin-2, WU  Jian-Xin-2, CHENG  Xu-Zhen-2, YANG  Xiao-Ming-1, 3   

  1. 1、College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070;
    2、Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081;
    3、Institute of Crops, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2013-12-15 Online:2014-06-06 Published:2014-02-21

Abstract: 【Objective】On the basis of previous studies, a genetic map of mungbean was constructed by using genome SSR, EST-SSR, STS primers of mungbean and common bean to build a platform for positioning important traits related genes, cloning and molecular marker-assisted breeding of new varieties of mungbean.【Method】A total of 6 686 SSR, EST-SSR, STS primers of mungbean and common bean, including 6 100 genome SSR, 149 EST-SSR, 13 STS primer pairs of mungbean, and 424 genome SSR primers of common bean, were used for PCR amplification to screen polymorphic markers between Australia-imported Berken (highly susceptible cultivar)×ACC41 (highly resistant wild species) and a RIL derived from these two genotypes were tested with the polymorphic markers. Combined with the molecular marker data of previous studies, Mapmarker/Exp 3.0 software was used for map construction and set LOD≥3.0, the maximum figure at 50.00 cM. Finally, Joinmap 4.0 software was used for map integration.【Result】In this study, from the two parents, 6 686 SSR primers were screened, a total of 3 691 pairs of primers were amplified stable products, 588 pairs of polymorphic primers were obtained. Among them, mungbean SSR primers 6 100 pairs, effective amplification 3 459 pairs, the effective rate of 56.7%, obtained 559 pairs of polymorphic primers; Mungbean EST-SSR primers 149 pairs, effective amplification 126 pairs, the effective rate of 84.6%, obtained 21 pairs of polymorphic primers; Common bean SSR primers 424 pairs, effective amplification 97 pairs, the effective rate of 22.9%, obtained 6 pairs of polymorphic primers; Mungbean STS primers 13 pairs, effective amplification 9 pairs, the effective rate of 69.2%, obtained 2 pairs of polymorphic primers; These results indicated that different sources and types of SSR primers to amplify the effective rate of the parent were significantly different. Mungbean EST-SSR primers (84.6%) were the highest, mungbean STS primers (69.2%) and mungbean SSR primers (55.7%) followed, common bean SSR primers (22.9%) were the lowest. An integrated genetic linkage map of mungbean containing 585 markers was constructed (including 499 SSR markers, 74 RAPD markers, 9 STS markers and 3 RAPD markers). The total length of the map was 732.9 cM and covered 11 linkage groups. The average distance between markers was 1.25 cM. The average distance of each linkage group spanned 66.63 cM. The average number of markers was 53.18 for each of 11 chromosomes. The length of each linkage group ranged from 35 to 92 markers was from 45.2 cM to 112.8 cM. LG1 linkage group contained the largest number of 92 markers, the length was 112.8 cM. LG11 linkage group contained the minimum number of 35 markers, the length was 48.7 cM. Of the 585 markers loci mapping conducted χ2 tests under P<0.05 and P<0.01 conditions, respectively, 79 and 151 markers showed a segregation distortion, the total number of sites marked 39.3%.【Conclusion】A linkage map of mungbean with a maximum and the highest density genetic markers was constructed compared with that published at home and abroad at present.

Key words: mungbean , genetic linkage map , marker

[1]程须珍, 王述民. 中国食用豆类品种志. 北京: 中国农业科学技术出版社, 2009: 19-20.

Cheng X Z, Wang S M. Chinese Legumes Variety Pictorial. Beijing: China Agriculture Science and Technology Press, 2009: 19-20. (in Chinese)

[2]刘长友, 程须珍, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁. 用于绿豆种质资源遗传多样性分析的SSR及STS引物的筛选. 植物遗传资源学报, 2007, 8(3): 298-302.

Liu C Y, Cheng X Z, Wang S H, Wang L X, Sun L, Mei L, Xu N. The screening of SSR and STS markers for genetic diversity analysis of mungbean germplasm. Journal of Plant Genetic Resource, 2007, 8(3): 298-302. (in Chinese)

[3]程须珍, 王素华. 中国绿豆产业发展及科技应用. 北京: 中国农业科学技术出版社, 2002: 3-8.

Cheng X Z, Wang S H. Indusdustrial Development and Technology Utilization of Mungbean in China. Beijing: China Agriculture Science and Technology Press, 2002: 3-8. (in Chinese)

[4]郑卓杰, 王述民, 宗绪晓, 中国食用豆类学. 北京: 中国农业出版社. 1997: 3-6.

Zheng Z J, Wang S M, Zong X X. Food Legumes in China. Beijing: Chinese Agriculture Press, 1997: 3-6. (in Chinese)

[5]Suyal G, Mukherjee S K, Choudhury N R. The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Archives of Virology, 2013, 158: 1932-1940.

[6]Lambrides C J, Godwin I D.  Mungbean//Kole C. ed. Genome Mapping and Molecular Breeding in Plants, vo. l3. Pulses, Sugar and Tuber Crops. Springer, Germany, 2007: 75-76.

[7]Somta P, Srinives P. Genome research in mungbean (Vigna radiata (L.) Wilczek) and blackgram (V. mungo (L.) Hepper). Science Asia, 2007, 33(Suppl 1): 69-74.

[8]Sudha M, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Balasubramanian P. Screening of mungbean (Vigna radiata) germplasm for resistance to Mungbean yellow mosaic virus using agroinoculation. Canadian Journal of Plant Pathology, 2013, 35(3): 424-430.

[9]Young N D, Kumar L, Menancio-Hautea D, Danesh D, Talekar N S, Shanmugasundarum S, Kim D H. RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiate (L.) Wilczek). Theoretical and Applied Genetics, 1992, 84(7/8): 839-844.

[10]Sarkar S, Ghosh S, Chatterjee M, Das P, Lahari T, Maji A, Bhattacharyya S. Molecular markers linked with bruchid resistance in Vigna radiata var. Sublobata and their validation. Journal of Plant Biochemistry and Biotechnology, 2011, 20(2): 155-160.

[11]Sudha M, Anusuya P, Mahadev N G, Karthikeyan A, Nagarajan P, Raveendran M, Balasubramanian P. Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridisation for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Archives of Phytopathology and Plant Protection, 2013, 46(5): 503-517.

[12]孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁. 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008, 41(5): 1291-1296.

Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N. Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Scientia Agricultura Sinica, 2008, 41(5): 1291-1296. (in Chinese)

[13]Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y. The effectiveness of evaluating wild species: Searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000, 115(1): 27-41.

[14]Taleker N S. Biology, damage and control of bruchid pests of mungbean//Mungbean: Proceedings of the Second International Symposium. AVRDC, Tainan, Taiwan. 1988: 329-342.

[15]Bains T S, Brar J S, Singh G, Sekhon H S, Kooner B S, Shanmugasundaram S. Status of production and distribution of mungbean seed in different cropping seasons//Improving Income and Nutrition by Incorporating Mungbean in Cereal Fallows in the Indo-Gangetic Plains of South Asia DFID Mungbean Project for 2002–2004. 2006: 104.

[16]Singh P, Vijaya D, Chinh N T, Pongkanjana A, Prasad K S, Srinivas K, Wani S P. Potential productivity and yield gap of selected crops in the rainfed regions of India, Thailand, and Vietnam. Natural Resource Management Program Report, 2001(5): 27-32.

[17]Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y. The effectiveness of evaluating wild species: Searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000, 115(1): 27-41.

[18]Somta C, Somta P, Tomooka N, Ooi P C, Vaughan D A, Srinives P. Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Journal of Stored Products Research, 2008, 44(4): 316-321.

[19]Xu L, Wang L, Gong Y, Da W, Wang Y, Zhu X, Liu L. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theoretical and Applied Genetics, 2012, 125(4): 659-670.

[20]Javidfar F, Cheng B. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.). BMC Plant Biology, 2013, 13(1): 142.

[21]Menancio-Hautea D, Kumar L, Danesh D, Young N D. A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2n= 2x= 22)//O B'rien J S ed. Genetic Maps 1992, A Compilation of Linkage and Restriction Maps of Genetically Studied Organisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993, 6: 259-261.

[22]Lambrides C J, Lawn R J, Godwin I D, Manners J, Imrie B C. Two genetic linkage maps of mungbean using RFLP and RAPD markers. Crop and Pasture Science, 2000, 51(4): 415-425.

[23]Humphry M, Konduri V, Lambrides C, Magner T, McIntyre C, Aitken E, Liu C. Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theoretical and Applied Genetics, 2002, 105(1): 160-166.

[24]Sholihin H D M. Molecular mapping of drought resistance in mungbean [Vignaradiata (L.) Wilczek ]: 1. Linkage map in mungbean using AFLP markers. Journal Biotechnology Pertanian, 2002, 7: 17-24.

[25]Chen H M, Liu C A, Kuo C G, Chien C M, Sun H C, Huang C C, Ku H M. Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica, 2007, 157(1/2): 113-122.

[26]Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Omooka N. Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). Plos One, 2012, 7(8): e41304.

[27]赵丹, 程须珍, 王丽侠, 王素华, 马燕玲. 绿豆遗传连锁图谱的整合. 作物学报, 2010, 36(6): 932-939.

Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L. Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agronomica Sinica, 2010, 36(6): 932-939. (in Chinese)

[28]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.

[29]Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3. 0. Cambridge: Whitehead Institute Technical Report, 1992.

[30]Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics, 2002, 105(4): 622-628.

[31]Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theoretical and Applied Genetics, 1996, 93(7): 1017-1025.

[32]Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical and Applied Genetics, 1989, 78(1): 65-75.

[33]De Caire J, Coyne C J, Brumett S, Shultz J L. Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breeding, 2012, 131(1): 222-226.

[34]Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura  Y, Isobe S. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theoretical and Applied Genetics, 2010, 121(4): 731-739.

[35]Kriegner A, Cervantes J C, Burg K, Mwanga R O, Zhang D. A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Molecular Breeding, 2003, 11(3): 169-185.

[36]Akond M, Liu S, Schoener L, Anderson J A, Kantartzi S K, Meksem K, Kassem M A. A SNP-based genetic linkage map of soybean using the SoySNP6K illumina infinium beadchip genotyping array. Journal of Plant Genome Sciences, 2013, 1(3): 80-89.

[37]Menéndez C M, Hall A E, Gepts P. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theoretical and Applied Genetics, 1997, 95(8): 1210-1217.

[38]Galeano C, Cortés A, Fernández A, Soler Á, Franco-Herrera N, Makunde G, Blair M. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genetics, 2012, 13(1): 48.

[39]陈佳慧, 兰进好, 王晖, 王文文, 田纪春. 小麦RIL群体 SSR 分子标记偏分离的遗传分析. 麦类作物学报, 2011, 31(3): 407-410.

Cheng J H, Lan J H, Wang H, Wang W W, Tian J C. Genetic analysis on segregation distortion of molecular markers in wheat RIL population. Journal of Triticeae Crops, 2011, 31(3): 407-410. (in Chinese)

[40]Gebhardt C, Ritter E, Salamini F. RFLP map of the potato// DNA-based Markers in Plants. Springer Netherlands, 1994: 271-285.

[41]Ma Y, Bao S Y, Yang T, Hu J G, Guan J P, He Y H, Zong X X. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breeding, 2013, 132: 397-400.

[42]Zhou J Q, Guo Y Q, Gao Y F, Li J S, Yan J B. A SSR linkage map of maize × teosinte F2 population and analysis of segregation distortion. Agricultural Sciences in China, 2011, 10(2): 166-174.

[43]Lyttle T W. Segregation distorters. Annual Review of Genetics, 1991, 25(1): 511-581.

[44]Shappley Z W, Jenkins J N, Meredith W R, McCarty Jr J C. An RFLP linkage map of Upland cotton, Gossypium hirsutum L.. Theoretical and Applied Genetics, 1998, 97(5/6): 756-761.

[45]Lacape J. M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Hau B. A combined RFLP SSR AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46(4): 612-626.

[46]Tzeng T H, Lyngholm L K, Ford C F, Bronson C R. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics, 1992, 130(1): 81-96.

[47]Lagercrantz U, Lydiate D J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome, 1995, 38(2): 255-264.

[48]Cloutier S, Cappadocia M, Landry B S. Analysis of RFLP mapping inaccuracy in Brassica napus L.. Theoretical and Applied Genetics, 1997, 95(1/2): 83-91.

[49]Hackett C A, Broadfoot L B. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity, 2003, 90(1): 33-38.

[50]王竹林, 刘曙东, 刘惠远, 何中虎, 夏先春, 陈新民. ‘百农64’ × ‘京双16’小麦遗传连锁图谱构建. 西北植物学报, 2006, 26(5): 886-892.

Wang Z L, Liu S D, Liu H Y, He Z H, Xia X C, Chen X M. Genetic linkage map in ‘Bainong 64’ × ‘Jingshuang 16’ of wheat. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 886-892. (in Chinese)

[51]李卫华, 刘伟, 尤明山, 许杰, 刘春雷, 李保云, 刘广田. 利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析. 麦类作物学报, 2007, 27(1): 1-6.

Li W H, Liu W, You M S, Xu J, Liu C L, Li B Y, Liu G T. Construction of wheat molecular linkage map using different SSR markers and the polymorphism of the markers. Journal of Triticeae Crops, 2007, 27(1): 1-6. (in Chinese)
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[4] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[5] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[6] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[7] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[8] ZHANG WeiDong,ZHENG YuJie,GE Wei,ZHANG YueLang,LI Fang,WANG Xin. Identification of Cashmere Dermal Papilla Cells Based on Single- Cell RNA Sequencing Technology [J]. Scientia Agricultura Sinica, 2022, 55(12): 2436-2446.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[11] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[12] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[13] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[14] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[15] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!