Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (3): 441-451.doi: 10.3864/j.issn.0578-1752.2014.03.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

On Boll-Setting Optimization Theory for Cotton Cultivation and Its New Development

 DONG  He-Zhong-1, MAO  Shu-Chun-2, ZHANG  Wang-Feng-3, CHEN  De-Hua-4   

  1. 1、Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100;
    2、Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan;
    3、College of Agronomy, Shihezi University, Shihezi 832003, Xijiang;
    4、Agricultural College of Yangzhou University, Yangzhou 225001, Jiangsu
  • Received:2013-09-24 Online:2014-02-01 Published:2013-12-18

Abstract: After 60 years of research and production practice, China not only has established an intensive farming based technology system of cotton cultivation with distinctive Chinese characteristics, but also has founded a relatively complete theoretical system for China cotton cultivation. Such a theoretical system of cotton cultivation has made important contributions to enable China to be the first major cotton producing country in the world. Boll-setting optimization theory is the core of the theoretical system for high-yielding and fine-quality cotton production in China. The establishment, main contents and prospects of the boll-setting optimization theory are reviewed in this paper. Fiber yield and quality are a function of boll setting, which is significantly affected by boll-setting period, spatial position of the bolls, and the physiological state of the cotton plant. Optimization of cotton fruiting can be realized through formation of more bolls at the best boll-setting period, and in the best spatial position in a cotton plant with the most healthy physiological state. Peak boll-setting period is a stage with high photosynthetic efficiency for a cotton plant. Cotton fruiting can be further improved by synchronizing the periods of high photosynthetic efficiency of leaf canopy, peak boll-setting and ample light and heat resources. To optimize cotton fruiting, it is necessary, on the one hand, to stabilize or increase both the biological yield and economic index and on the other hand, to simultaneously increase the number of bolls per unit area and boll size through coordinating cultivar, environment and cultivation measures based on the dry matter accumulation and distribution features of high-yielding cotton. Photosynthetic products are the material basis that determine cotton yield. Dry matter accumulation at different growth stages directly affects boll setting in cotton. Optimization of cotton fruiting requires the maintenance of a higher dry matter accumulation after full bloom throughout the boll opening stage and a relatively high harvest index. It also requires configuration of an ideal plant architecture and optimal crop population structure through proactive and anticipatory control of cotton ontogeny. Maturity performance is termed as senescence performance of a cotton plant during boll opening. It includes performances of normal maturity, late maturity and premature senescence performance, respectively. Disorders of sink and source, as well as root and canopy often decreased root-sourced cytokinin levels and increased abscisic acid content, which might lead to early or delayed senescence-associated gene expression, finally leading to the formation of abnormal maturity performance (late maturity and premature senescence). To optimize the boll setting, it is necessary to well coordinate the relationship between the sink and source, root and canopy to realize the normal maturation of cotton plants. The establishment of boll-setting optimization theory not only promotes the development of science and technology of cotton cultivation in China, but also provides a strong theoretical support for the healthy development of China's cotton industry. It is believed that boll-setting optimization theory will remain the core of China’s theoretical system for high yield and quality cotton cultivation in the future. However, with the adoption and development of simplification, mechanization, sustainable and green production technology, cotton fruiting optimization theory will also experience further changes and development to better support the development of China's cotton production.

Key words: cotton , optimization of boll-setting , high yield , fine fiber quality

[1]中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013: 376-526.

Cotton Research Institute, Chinese Academy of Agricultural Sciences. Cotton Farming in China. Shanghai: Shanghai Scientific and Technical Publishers, 2013: 376-526. (in Chinese)

[2]谈春松. 棉花优质高产栽培. 北京: 中国农业出版社, 1992: 43-79.

Tan C S. Fine Quality and High Yielding Cultivation of Cotton. Beijing: China Agriculture Press, 1992: 43-79. (in Chinese)

[3]棉花结铃模式调节研究协作组. 棉花优质高产结铃模式调节及配套技术. 中国棉花, 1991(4): 19-20.

Collaborative Group for Boll-setting Pattern Research. Adjustment of boll-setting pattern for high yield and fine quality of cotton and its supporting technology. China Cotton, 1991(4): 19-20. (in Chinese)

[4]中国农业科学院棉花研究所. 棉花优质高产的理论与技术. 北京:中国农业出版社, 1999: 128-281.

Cotton Research Institute, Chinese Academy of Agricultural Sciences. Theory and Technology for Fine Quality and High Yield of Cotton Production. Beijing: China Agriculture Press, 1999: 128-281. (in Chinese)

[5]山东省棉花研究所. 棉花丰产栽培技术的初步研究. 山东农业科学, 1965(3): 4-7.

Shandong Cotton Research Institute. Preliminary study on cotton cultivation techniques. Journal of Shandong Agricultural Science, 1965(3): 4-7. (in Chinese)

[6]上海农业科学院作物育种栽培研究所. 棉花高产生育规律和诊断指标鉴定试验. 棉花, 1978(2): 15.

Research Institute of Crop Breeding and Cultivation. Cotton yield qualification tests on diagnostic indicators of growth and development patterns for high yielding cotton. Cotton, 1978(2): 15. (in Chinese)

[7]中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 1983: 66-67.

Cotton Research Institute, Chinese Academy of Agricultural Sciences. Cotton Farming in China. Shanghai: Shanghai Scientific and Technical Publishers, 1983: 66-67. (in Chinese)

[8]谈春松, 黄树梅, 阎丈斌. 棉纤维品质的时空分布与优质棉栽培. 中国棉花, 1985(6): 26-29.

Tan C S, Huang S M, Yan Z B. Spatial and temporal distribution of cotton fiber quality and cotton cultivation for high yield. China Cotton, 1985(6): 26-29. (in Chinese)

[9]何旭平, 纪从亮. 现代中国棉花育种与栽培概论. 北京: 中国农业科学技术出版社, 2007: 207-219.

He X P, Ji C L. Introduction to Modern Cotton Breeding and Cultivation in China. Beijing: China Science and Technology Press, 2007: 207-219. (in Chinese)

[10]陈德华. 棉花群体质量及其调控//凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2005: 293-386.

Chen D H. Population quality and regulation in cotton//Ling Q H. Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2005: 293-386. (in Chinese)

[11]杨铁钢, 谈春松, 郭红霞. 棉花营养生长和生殖生长关系研究. 中国棉花, 2003(7): 13-16.

Yang T G, Tan C S, Guo H X. Studies on relationship between vegetative growth and reproductive growth in cotton. China Cotton, 2003(7): 13-16. (in Chinese)

[12]董合忠, 李振怀, 罗振, 卢合全, 唐薇, 张冬梅, 李维江, 辛承松. 密度和留叶枝对棉株产量的空间分布和熟相的影响. 中国生态农业学报, 2010, 18(4): 792-798.

Dong H Z, Li Z H, Luo Z, Lu H Q, Tang W, Zhang D M, Li W J, Xin C S. Effect of plant density and vegetative branch retention on within-plant yield distribution and maturity performance of cotton. Chinese Journal of Eco-Agriculture, 2010, 18(4): 792-798. (in Chinese)

[13]谈春松. 棉花株型栽培研究. 中国农业科学, 1993, 26(4): 36-43.

Tan C S. On ideotype cultivation of cotton. Scientia Agricultura Sinica, 1993, 26(4): 36-43. (in Chinese)

[14]陈德华, 肖书林, 王志国, 展金奇, 纪从亮, 端木鑫. 棉花超高产群体质量与产量关系研究. 棉花学报, 1996, 8(4): 199-203.

Chen D H, Xiao S L, Wang Z G, Zhan J Q, Ji C L, Duan M X. The study on the relationship between yield and population quality for super high yield in cotton. Acta Gossypii Sinica, 1996, 8(4): 199-203. (in Chinese)

[15]纪从亮, 沈建辉, 束林华. 棉花高产群体质量栽培技术. 棉花学报, 1998, 10(5): 225-231.

Ji C L, Shen J H, Shu L H. Cultural techniques for high- yield quality colony in cotton production. Acta Gossypii Sinica, 1998, 10(5): 225-231. (in Chinese)

[16]刘艺多. 高产优质棉田高光效群体生态结构模式的研究. 江苏农业科学, 1991(1): 23-26.

Liu Y D. Studies on the ecosystem pattern with high photosynthetic efficiency in high-yielding and fine quality cotton field. Journal of Jiangsu Agricultural Sciences, 1991(1): 23-26. (in Chinese)

[17]王远, 刘生荣, 高建中, 段媛凤. 亩产150公斤皮棉株型生态模式调查. 陕西农业科学, 1987(5): 14-18.

Wang Y, Liu S R, Gao J Z, Duan Y F. Investigation on ecological pattern of plant ideotype with 150 kg lint per 667 m2 ground area. Journal of Shaanxi Agricultural Science, 1987(5): 14-18. (in Chinese)

[18]许玉璋, 赵都利, 许萱. 温度对棉纤维发育的影响. 西北农业学报, 1993, 2(4): 19-23.

Xu Y Z, Zhao D L, Xu X. Effects of temperature on cotton fiber development. Acta Agriculturae Boreali-Occidentalis Sinica, 1993, 2(4): 19-23. (in Chinese)

[19]蒋光华, 周治国, 陈兵林, 孟亚利. 棉株生理年龄对纤维加厚发育及纤维比强度形成的影响. 中国农业科学, 2006, 39(2): 265-273.

Jiang G H, Zhou Z G, Chen B L, Meng Y L. Effect of cotton physiological age on the fiber thickening development and fiber strength formation. Scientia Agricultura Sinica, 2006, 39(2): 265-273. (in Chinese)

[20]赵新华, 王友华, 束红梅, 周治国. 棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响. 中国农业科学, 2010, 43(22): 4605-4613.

Zhao X H, Wang Y H, Shu H M, Zhou Z G. Effect of plant physiological age on biomass and nitrogen accumulation in cotton boll. Scientia Agricultura Sinica, 2010, 43(22): 4605-4613. (in Chinese)

[21]王克如, 李少昆, 宋光杰, 陈刚, 曹栓柱. 新疆棉花高产栽培生理指标研究. 中国农业科学, 2002, 35(6): 638-644.

Wang K R, Li S K, Song G J, Chen G, Cao S Z. Studies on cultivated physiological indexs for high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 2002, 35(6): 638-644. (in Chinese)

[22]张旺峰, 李蒙春, 杨新军. 北疆高产棉花干物质积累的模拟. 石河子大学学报: 自然科学版, 1998(2): 87-92.

Zhang W F, Li M C, Yang X J. Simulation of the high yield cotton dry matter accumulation in north Xinjiang. Journal of Shihezi University: Natural Science, 1998(2): 87-92. (in Chinese)

[23]陈德华, 王兆龙, 吴云康, 徐冰, 蔡瑞生. 转Bt基因抗虫棉杂交种光合生产及干物质分配特点研究. 棉花学报, 1998, 10(1): 33-37.

Chen D H, Wang Z L, Wu Y K, Xu B, Cai R S. Study on the photosynthetic production and dry matter distribution character of Bt-transgenic cotton. Acta Gossypii Sinica, 1998, 10(1): 33-37. (in Chinese)

[24]郭仁松, 刘盼, 张巨松. 南疆超高产棉花光合物质生产与分配关系的研究. 棉花学报, 2010, 22(5): 471-478.

Guo R S, Liu P, Zhang J S. Study on relations on photosynthetic production and its distribution of super high-yield cotton in south Xinjiang. Cotton Science, 2010, 22(5): 471-478. (in Chinese)

[25]董合忠, 李维江, 李振怀, 唐嶶. 转Bt基因抗虫杂交棉与亲本光合能力比较. 核农学报, 2000, 14(5): 284-289.

Dong H Z, Li W J, Li Z H, Tang W. Comparison of photosynthetic capacity between Bt transgenic hybrid cotton and its parents. Acta Agriculturae Nucleatae Sinica, 2000, 14(5): 284-289. (in Chinese)

[26]陈奇恩, 田明军, 吴云康. 棉花生育规律与优质高产高效栽培. 北京: 中国农业出版社, 1997: 74-96.

Chen Q E, Tian M J, Wu Y K. Cotton Growth and Development Regularity and Cultivation for Fine Quality, High Yield and Efficiency. Beijing: China Agriculture Press, 1997: 74-96. (in Chinese)

[27]南殿杰, 赵海祯, 吴云康. 棉花株型栽培的增产机理及技术研究. 棉花学报, 1995, 7(4): 238-242.

Nan D J, Zhao H Z, Wu Y K. Mechanism of increasing yield and its technical studies for cotton plant pattern cultivation. Acta Gossypii Sinica, 1995, 7(4): 238-242. (in Chinese)

[28]陈德华, 吴云康, 蒋德铨, 戴敬. 棉花优化栽培的群体光分布动态及光合生产的研究. 棉花学报, 1995, 7(2): 113-117.

Chen D H, Wu Y K, Jiang D Q, Dai J. Study on the population light intensity distributive dynamics and photosynthetic production dynamics of optimal culture in cotton. Acta Gossypii Sinica, 1995, 7(2): 113-117. (in Chinese)

[29]陈德华, 肖书林, 王志国, 展金奇, 纪从亮, 端木鑫. 棉花群体叶面积载荷量与产量关系及对源的调节效应研究. 棉花学报, 1996, 8(2): 109-112.

Chen D H, Xiao S L, Wang Z G, Zhan J Q, Ji C L, Duan M X. Study on the relationship of sink capacity of unit leaf area to yield and regulation effect to source in cotton population. Acta Gossypii Sinica, 1996, 8(2): 109-112. (in Chinese)

[30]纪从亮. 棉花高产群体质量栽培技术的研究与应用I. 棉花高产群体质量指标. 江苏农业科学, 1998(1): 22-24.

Ji C L. Population quality based cultivation technology in cotton and its application I. Indicators of population quality. Journal of Jiangsu Agricultural Sciences, 1998(1): 22-24. (in Chinese)

[31]陈源, 顾万荣, 王汝利. 棉花叶系质量划分及叶层配置的研究. 棉花学报, 2004, 16(5): 313-318.

Chen Y, Gu W R, Wang R L. Studies on classification of the leaf systematic quality and leaf area distribution in cotton. Cotton Science, 2004, 16(5): 313-318. (in Chinese)

[32]张旺锋, 勾玲, 李蒙春, 刘克贞, 李正尚, 李正河, 蔡红梅, 郭世 明. 北疆高产棉田群体光合速率及与产量关系的研究. 棉花学报, 1999, 11(4): 185-190.

Zhang W F, Gou L, Li M C, Liu K Z, Li Z S, Li Z H, Cai H M, Guo S M. Studies on the relationship between canopy apparent photosynthesis rate and yield in cotton in north Xinjiang. Acta Gossypii Sinica, 1999, 11(4): 185-190. (in Chinese)

[33]李少昆, 张旺锋, 马富裕, 王克如, 慕自新. 北疆超高产棉花(皮棉2000 kg?hm-2)生理特性研究. 作物学报, 2000, 26(4): 508-512.

Li S K, Zhang W F, Ma F Y, Wang K R, Mu Z X. A study on physiological characteristics of super high lint yield (2000 kg?hm-2) cotton in north Xinjiang. Acta Agronomica Sinica, 2000, 26(4): 508-512. (in Chinese)

[34]李文炳. 山东棉花. 上海: 上海科学技术出版社, 2001: 335-341.

Li W B. Shandong Cotton. Shanghai: Shanghai Scientific and Technical Publishers, 2001: 335-341. (in Chinese)

[35]李维江, 唐薇, 李振怀. 抗虫杂交棉的高产理论与栽培技术. 山东农业科学, 2005(3): 21-24.

Li W J, Tang W, Li Z H. Theory and cultivation technology for high-yielding hybrid cotton. Journal of Shandong Agricultural Sciences, 2005(3): 21-24. (in Chinese)

[36]Dong H Z, Li W J, Li Z H, Tang W, Zhang D M. Evaluation of a production system in China that uses reduced plant densities and retention of vegetation branches. Journal of Cotton Science, 2005, 9(1): 1-9. (in Chinese)

[37]孙济中, 陈布圣. 棉作学. 北京: 中国农业出版社, 1999: 128-138, 219-221.

Sun J Z, Chen B S. Cotton Farming. Beijing: China Agriculture Press, 1999: 128-138, 219-221. (in Chinese)

[38]董合忠, 李维江, 唐薇, 张冬梅, 李振怀, 牛曰华. 不同基因型抗虫棉的光合生产与叶源特征. 棉花学报, 2005, 17(6): 328-333.

Dong H Z, Li W J, Tang W, Zhang D M, Li Z H, Niu Y H. Photosynthetic production and leaf source parameters of various Bt cotton genotypes. Cotton Science, 2005, 17(6): 328-333. (in Chinese)

[39]孔祥强, 董合忠. 滨海盐碱地棉花熟相调控技术及其机理. 棉花学报, 2011, 23(5): 466-471.

Kong X Q, Dong H Z. Mechanisms and techniques for regulating maturity performance of cotton in coastal saline soils. Cotton Science, 2011, 23(5): 466-471. (in Chinese)

[40]刘连涛, 李存东, 孙红春, 张永江, 白志英, 冯丽肖. 氮素营养水平对棉花衰老的影响及其生理机制. 中国农业科学, 2009, 42(5): 1575-1581.

Liu L T, Li C D, Sun H C, Zhang Y J, Bai Z Y, Feng L X. Effects of nitrogen on cotton s enescence and the corresponding physiological mechanisms. Scientia Agricultura Sinica, 2009, 42(5): 1575-1581. (in Chinese)

[41]代建龙, 董合忠, 李维江, 唐薇. 棉花早衰的表现及其机理. 中国农学通报, 2008, 24(3): 210-214.

Dai J L, Dong H Z, Li W J, Tang W. Performance and mechanisms of premature senescence in cotton. Chinese Agricultural Science Bulletin, 2008, 24(3): 210-214. (in Chinese)

[42]董合忠, 李维江, 唐薇, 张冬梅. 棉花生理性早衰研究进展. 棉花学报, 2005, 17(1): 56-60.

Dong H Z, Li W J, Tang W, Zhang D M. Research progress in physiological premature senescence in cotton. Cotton Science, 2005, 17(1): 56-60. (in Chinese)

[43]Plaut Z, Mayoral M L, Reinhold L. Effect of altered sink: source ratio on photosynthetic metabolism of source leaves. Plant Physiology, 1987, 85(30): 786-791.

[44]李振怀, 李维江, 唐薇, 董合忠, 张冬梅, 张晓洁, 王胜利. 不同抗虫棉基因型的生长发育和产量表现. 棉花学报, 2005, 17(3): 155-159.

Li Z H, Li W J, Tang W, Dong H Z, Zhang D M, Zhang X J, Wang S L. Plant growth and development and yield performance of various Bt cotton genotypes. Cotton Science, 2005, 17(3): 155-159. (in Chinese)

[45]Dong H Z, Niu Y H, Li W J, Zhang D M. Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Journal of Experimental Botany, 2008, 59: 1295-1304.

[46]Dong H Z, Niu Y H, Kong X Q, Luo Z, Lu H Q. Effects of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Plant Growth Regulation, 2009, 59(2): 93-101.

[47]Dai J L, Dong H Z. Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Acta Physiologiae Plantarum, 2011, 33: 1697-1705.

[48]Kong X Q, Luo Z, Dong H Z, Eneji A E, Li W J, Lu H Q. Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. PLoS ONE, 2013, 208(7): e69847.

[49]Dong H Z, Li W J, Eneji A E, Zhang D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research, 2012, 126: 137-144.

[50]Zhang H J, Dong H Z, Li W J, Zhang D M. Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. Journal of Agronomy and Crop Science, 2012, 198: 27-37.

[51]董合忠. 滨海盐碱地棉花轻简栽培: 现状、问题与对策. 中国棉花, 2011, 38(12): 2-4.

Dong H Z. On Simplified cotton cultivation in coastal saline fields: current situation, problems and countermeasures. China Cotton, 2011, 38(12): 2-4. (in Chinese)

[52]Dai J L, Dong H Z. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 2014, 155: 99-110.

[53]毛树春. 我国棉花种植技术的现代化问题—兼论“十二五”棉花栽培相关研究. 中国棉花, 2010, 37(3): 2-5.

Mao S C. On modernization of cotton planting in China—Related research on cotton cultivation from 2010 to 2015. China Cotton, 2010, 37(3): 2-5. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[5] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[8] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[9] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[10] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[11] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[12] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[13] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[14] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[15] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!