Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4657-4664.doi: 10.3864/j.issn.0578-1752.2013.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Mechanism Underlying Photoperiodic-Induced Potato Tuber Formation

 XIE  Ting-Ting, LIU  Jun   

  1. College of Life Science and Technology, Huazhong Agricultural University/National Center for Vegetable Improvement (Central China)/Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070
  • Received:2013-05-26 Online:2013-11-15 Published:2013-08-01

Abstract: Research on potato tuber formation is not only an important aspect of plant developmental biology, but also critical to improve potato yield and quality. It has been known for a long time that photoperiod plays a vital role in potato tuberization. Molecular mechanism underlying it, however, had made less progress until this century. More and more data support that potato tuber formation and Arabidopsis flowering share a similar pathway and a large number of common genes, such as Phytochrome, CONSTANS (CO), FLOWERING LOCUS T (FT), LOV blue light receptors and transcription factor CDF. In addition, a homeobox gene POTH1 and its interacting gene StBEL5, which were first studied in potato tuber formation, are identified to be affected by light. In this paper, recent progress in molecular mechanism underlying photoperiodic-induced potato tuber formation is described in the aspects of light signal perception, photoperiodic signal transduction and tuber induction by mobile signal molecules.

Key words: potato , tuber formation , photoperiodic-induction

[1]Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annual Review of Genetics, 2004, 38: 87-117.

[2]Yanovsky M J, Izaguirre M, Wagmaister J A, Gatz C, Jackson S D, Thomas B, Casal J J. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. The Plant Journal, 2000, 23: 223-232.

[3]Jackson S, Heyer A, Dietze J, Prat S. Phytochrome B mediates the photoperiodic control of tuber formation in potato. The Plant Journal, 1996, 9: 159-166.

[4]Jackson S D, James P, Prat S, Thomas B. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiology, 1998, 117: 29-32.

[5]Strasser B, Sanchez-Lamas M, Yanovsky M J, Casal J J, Cerdan P D. Arabidopsis thaliana life without phytochromes. Proceedings of the National Acadamy of Science of the USA, 2010, 107: 4776-4781.

[6]Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: Phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiology, 2013, 54: 8-23.

[7]Inui H, Ogura Y, Kiyosue T. Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen). FEBS Letters, 2010, 584: 2393-2396.

[8]Kloosterman B, Abelenda J A, Gomez Mdel M, Oortwijn M, de Boer J M, Kowitwanich K, Horvath B M, van Eck H J, Smaczniak C, Prat S, Visser R G F, Bachem C W B. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495: 246-250.

[9]Kinmonth-Schultz H A, Golembeski G S, Imaizumi T. Circadian clock-regulated physiological outputs: Dynamic responses in nature. Seminars in Cell & Developmental Biology, 2013, 24: 407-413.

[10]McClung C R, Salome P A, Michael T P. The Arabidopsis circadian system. Arabidopsis Book, 2002, 1: e0044.

[11]Rutitzky M, Ghiglione H O, Cura J A, Casal J J, Yanovsky M J. Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genomics, 2009, 10: 60.

[12]Song Y H, Smith R W, To B J, Millar A J, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science, 2012, 336: 1045-1049.

[13]Sawa M, Nusinow D A, Kay S A, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318: 261-265.

[14]Cerdan P D, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423: 881-885.

[15]Roden L C, Song H R, Jackson S, Morris K, Carre I A. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proceedings of the National Academy of Science of the USA, 2002, 99: 13313-13318.

[16]Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120.

[17]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003-1006.

[18]Martinez-Garcia J F, Virgos-Soler A, Prat S. Control of photoperiod- regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proceedings of the National Acadamy of Science of the USA, 2002, 99: 15211-15216.

[19]Gonzalez-Schain N D, Suarez-Lopez P. CONSTANS delays flowering and affects tuber yield in potato. Biologia Plantarum, 2008, 52: 251-258.

[20]Gonzalez-Schain N D, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. The Plant Journal, 2012, 70: 678-690.

[21]Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965.

[22]An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 2004, 131: 3615-3626.

[23]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030-1033.

[24]Chailakyan M, Yanina L, Devedzhyan A, Lotova G. Photoperiodism and tuber formation in grafting of tobacco on to potato. Doklady Akademii Nauk SSSR, 1981, 257: 1276-1279.

[25]Navarro C, Abelenda J A, Cruz-Oro E, Cuellar C A, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478: 119-122.

[26]Lin T, Sharma P, Gonzalez D H, Viola I L, Hannapel D J. The impact of the long-distance transport of a BEL1-like messenger RNA on development. Plant Physiology, 2013, 161: 760-772.

[27]Mahajan A, Bhogale S, Kang I H, Hannapel D J, Banerjee A K. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Molecular Biology, 2012, 79: 595-608.

[28]Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain N D, Suarez-Lopez P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136: 2873-2881.

[29]Chatterjee M, Banerjee A K, Hannapel D J. A BELL1-like gene of potato is light activated and wound inducible. Plant Physiology, 2007, 145: 1435-1443.

[30]Banerjee A K, Chatterjee M, Yu Y, Suh S G, Miller W A, Hannapel D  J. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. The Plant Cell, 2006, 18: 3443-3457.

[31]Chen H, Banerjee A K, Hannapel D J. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. The Plant Journal, 2004, 38: 276-284.

[32]Rosin F M, Hart J K, Horner H T, Davies P J, Hannapel D J. Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiology, 2003, 132: 106-117.

[33]Chen H, Rosin F M, Prat S, Hannapel D J. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiology, 2003, 132: 1391-1404.

[34]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309: 1052-1056.

[35]Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309: 1056-1059.

[36]Yamaguchi S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 2008, 59: 225-251.

[37]Abelenda J A, Navarro C, Prat S. From the model to the crop: Genes controlling tuber formation in potato. Current Opinion in Biotechnology, 2011, 22: 287-292.
[1] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[2] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[5] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[6] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[9] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[10] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[11] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[12] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[13] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[14] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[15] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!